精英家教网 > 高中数学 > 题目详情
在平面四边形ABCD中,已知AB=3,DC=2,点E,F分别在边AD,BC上,且
AD
=3
AE
BC
=3
BF
.若向量
AB
DC
的夹角为60°,则
AB
EF
的值为
 
分析:设直线AB和DC相交于点H,则由题意可得∠AHD=60°,再令AH=DH=5,则△ADH为等边三角形.△HBC中,由余弦定理求得BC和cos∠HBC=cosθ 的值,可得AE、BF的值,再根据 
AB
EF
=
AB
•(
EA
+
AB
+
BF
)=
AB
EA
+
AB
2
+
AB
BF
,利用两个向量的数量积的定义计算求得结果.
解答:精英家教网解:如图所示:设直线AB和DC相交于点H,
则由题意可得∠AHD=60°,
令AH=DH=5,则由AB=3、DC=2,可得HC=3,BH=2,故△ADH为等边三角形.
△HBC中,由余弦定理求得BC=
BH2+HC2-2HC•BH•cos60°
=
7

AE=
1
3
AD=
5
3
,BF=
1
3
BC=
7
3

∴cos∠HBC=cosθ=
BH2+BC2-HC2
2BH•BC
=
7
14

AB
EF
=
AB
•(
EA
+
AB
+
BF
)=
AB
EA
+
AB
2
+
AB
BF
=3×
5
3
×cos120°+9+3×
7
3
×cosθ
=-
5
2
+9+
1
2
=7,
故答案为:7.
点评:本题主要考查两个向量的数量积的定义,两个向量的加减法的法则,以及其几何意义,余弦定理的应用,体现了数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在平面四边形ABCD中,若AC=3,BD=2,则(
AB
+
DC
)•(
AC
+
BD
)
=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱柱ABC-A1B1C1中,侧面ABB1A1,ACC1A1均为正方形,∠BAC=90°,点D是棱B1C1的中点.
(Ⅰ)求证:A1D⊥平面BB1C1C;(Ⅱ)求二面角D-A1C-A的余弦值.
(文科)如图甲,精英家教网在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙),设点E、F分别为棱AC、AD的中点.
(Ⅰ)求证:DC⊥平面ABC;
(Ⅱ)设CD=a,求三棱锥A-BFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面四边形ABCD中,AB=BC=CD=a,∠ABC=90°,∠BCD=135°,沿对角线AC将此四边形折成直二面角.
(1)求证:AB⊥平面BCD
(2)求三棱锥D-ABC的体积
(3)求点C到平面ABD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•武汉模拟)如图,在平面四边形ABCD中,AB=AD=1,∠BAD=θ,而△BCD是正三角形,
(1)将四边形ABCD面积S表示为θ的函数;
(2)求S的最大值及此时θ角的值.

查看答案和解析>>

同步练习册答案