精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+1和函数,方程g(x)=x有两个不等非零实根x1、x2(x1<x2).
(1)证明函数f(x)在(-1,1)上是单调函数;
(2)若方程f(x)=0的两实根为x3,x4(x3<x4),求使x3<x1<x2<x4成立的a的取值范围.
【答案】分析:(1)方程g(x)=x有两个不等非零实根,说明方程a2x2+bx+1=0(*)有不等实根,由△=b2-4a2>0,可得函数f(x)的对称轴的范围,进而根据二次函数的图象证明函数f(x)在(-1,1)上是单调函数
(2)先计算f(x1)、f(x2),再利用二次函数的图象,要使x3<x1<x2<x4,只需,解不等式即可
解答:解:(1)由方程a2x2+bx+1=0(*)有不等实根∴△=b2-4a2>0及a≠0,,即,或
又f(x)的对称轴
故f(x)在(-1,1)上是单调函数                               
(2)因x1、x2是方程(*)的根,∴a2x12+bx1+1=0∴bx1=-a2x12-1
同理bx2=-a2x22-1∴f(x1)=ax12+b1x1+1=ax12-a2x12+1=(a-a2)x12,同理f(x2)=(a-a2)x22
要使x3<x1<x2<x4,只需

故a的取值范围a>1
点评:本题考查了二次函数的图象和性质,解题时要熟记二次函数图象,能运用分类讨论的思想,数形结合解决问题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案