精英家教网 > 高中数学 > 题目详情

【题目】某市一所高中为备战即将举行的全市羽毛球比赛,学校决定组织甲、乙两队进行羽毛球对抗赛实战训练.每队四名运动员,并统计了以往多次比赛成绩,按由高到低进行排序分别为第一名、第二名、第三名、第四名.比赛规则为甲、乙两队同名次的运动员进行对抗,每场对抗赛都互不影响,当甲、乙两队的四名队员都进行一次对抗赛后称为一个轮次.按以往多次比赛统计的结果,甲、乙两队同名次进行对抗时,甲队队员获胜的概率分别为.

(1)进行一个轮次对抗赛后一共有多少种对抗结果?

(2)计分规则为每次对抗赛获胜一方所在的队得1分,失败一方所在的队得0分,设进行一个轮次对抗赛后甲队所得分数为X,求X的分布列及数学期望.

【答案】(1)16种;(2)见解析,

【解析】

1)每个同名次的对抗有2种结果,共有4个名次的对抗,所以有种结果;(2)由条件可知5种情况,分别计算概率得到分布列和数学期望.

(1)由于甲、乙两队的四名队员每进行一次对抗赛都会有2种情况产生,所以一共有(种)

(2)X的可能取值分别为4,3,2,1,0,则

X的分布列为

X

4

3

2

1

0

P

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某商家统计了去年两种产品的月销售额(单位:万元),绘制了月销售额的雷达图,图中点表示产品2月份销售额约为20万元,点表示产品9月份销售额约为25万元.

根据图中信息,下面统计结论错误的是(

A.产品的销售额极差较大B.产品销售额的中位数较大

C.产品的销售额平均值较大D.产品的销售额波动较小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱底面直角梯形,是棱上一点,.

(1)求异面直线所成的角;

(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆M与直线相切,且与圆N外切

1)求动圆圆心M的轨迹C的方程;

2)点O为坐标原点,过曲线C外且不在y轴上的点P作曲线C的两条切线,切点分别记为AB,当直线的斜率之积为时,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某港口某天0时至24时的水深(米)随时间(时)变化曲线近似满足如下函数模型.若该港口在该天0时至24时内,有且只有3个时刻水深为3米,则该港口该天水最深的时刻不可能为(

A.16B.17C.18D.19

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为正方形, 平面 上一点,且.

(1)求证: 平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下说法:

①将一组数据中的每一个数据都加上或减去同一个常数后,方差不变;

②设有一个回归方程,变量增加1个单位时,平均增加5个单位

③线性回归方程必过

④设具有相关关系的两个变量的相关系数为,那么越接近于0之间的线性相关程度越高;

⑤在一个列联表中,由计算得的值,那么的值越大,判断两个变量间有关联的把握就越大。

其中错误的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),若对于tRf(t)≤kt恒成立,则实数k的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是自然对数的底数,已知函数.

1)求函数的最小值;

2)函数上能否恰有两个零点?证明你的结论.

查看答案和解析>>

同步练习册答案