精英家教网 > 高中数学 > 题目详情
5.已知在函数$f(x)=\frac{1}{3}{x^3}-2{x^2}+ax({a∈R})$的所有切线中,有且仅有一条切线l与直线y=x垂直.
(1)求a的值和切线l的方程;
(2)设曲线y=f(x)在任一点处的切线倾斜角为α,求α的取值范围.

分析 (1)f′(x)=x2-4x+a,由题意知,方程x2-4x+a=-1有两个相等的根,即可求a的值;求出切点坐标,可得切线l的方程;
(2)由(1)知k=x2-4x+3=(x-2)2-1≥-1,即可求α的取值范围.

解答 解:(1)f′(x)=x2-4x+a,由题意知,方程x2-4x+a=-1有两个相等的根,
∴△=(-4)2-4(a+1)=0,∴a=3
此时方程x2-4x+a=-1化为x2-4x+4=0,得x=2,
解得切点的纵坐标为$f(2)=\frac{2}{3}$,
∴切线l的方程为$y-\frac{2}{3}=-({x-2})$,即3x+3y-8=0.
(2)设曲线y=f(x)上任一点(x,y)处的切线的斜率为k(由题意知k存在),
则由(1)知k=x2-4x+3=(x-2)2-1≥-1,
∴由正切函数的单调性可得α的取值范围为$0≤α<\frac{π}{2}$或$\frac{3π}{4}≤α<π$.

点评 本题考查导数知识的运用,考查导数的几何意义,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知公差不为0的等差数列{an}满足:a1=1且a2,a5,a14成等比数列.
(1)求数列{an}的通项公式an和前n项和Sn
(2)证明不等式$\frac{3}{2}-\frac{1}{n+1}<\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}<2-\frac{1}{n}(n≥2$且n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题:“若p则q”的逆命题是(  )
A.若?p则?qB.若?q则?pC.若q则pD.若p则q

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的体积为(  )
A.16π+$\sqrt{3}π$B.16π+8$\sqrt{3}$πC.16π+$\frac{8}{3}\sqrt{3}π$D.16π+$\frac{4}{3}\sqrt{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=x4+2x2是(  )
A.奇函数B.偶函数
C.既是奇函数又是偶函数D.非奇非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四边形ABCD是矩形,AB=1,$AD=\sqrt{2}$,E是AD的中点,BE与AC交于点F,GF⊥平面ABCD.
(Ⅰ)求证:AF⊥面BEG;
(Ⅱ)若AF=FG,求二面角E-AG-B所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,离心率$e=\frac{1}{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若经过左焦点F1且倾斜角为$\frac{π}{4}$的直线l与椭圆交于A、B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,E,E,G,H分别是棱AB,BB1,BC,CC1的中点,∠ABC=90°.则异面直线EF和GH所成的角是(  )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,上顶点为B,直线l:y=$\frac{1}{2}$x与椭圆E交于C,D两点,且△BCD的面积为$\sqrt{2}$.
(1)求椭圆E的标准方程;
(2)设点P是椭圆E上一点,过点P引直线m,其倾斜角与直线l的倾斜角互补.若直线m与椭圆E相交,另一交点为Q,且直线m与x,y轴分别交于点M,N,求证:QM2+QN2为定值.

查看答案和解析>>

同步练习册答案