精英家教网 > 高中数学 > 题目详情

【题目】是两条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则

②若,则

③若,则

④若,则

其中正确命题的序号是(

A.①和②B.②和③C.③和④D.①和④

【答案】A

【解析】

根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.

解:对于①,因为,所以经过作平面,使,可得

又因为,所以,结合.由此可得①是真命题;

对于②,因为,所以,结合,可得,故②是真命题;

对于③,设直线是位于正方体上底面所在平面内的相交直线,

而平面是正方体下底面所在的平面,

则有成立,但不能推出,故③不正确;

对于④,设平面是位于正方体经过同一个顶点的三个面,

则有,但是,推不出,故④不正确.

综上所述,其中正确命题的序号是①和②

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点与短轴两个端点的连线互相垂直.

1)求椭圆的标准方程;

2)设点为椭圆的上一点,过原点且垂直于的直线与直线交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法错误的是( )

A. 若“”为假命题,则pq均为假命题

B. ”是“”的充分不必要条件

C. ”的必要不充分条件是“

D. 若命题p,则命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对于曲线上任意点处的切线,总存在上处的切线,使得,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 命题”,则:“

B. 命题“若,则”的否命题是真命题

C. 为假命题,则为假命题

D. 的充分不必要条件,则的必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018衡水金卷(二)如图,矩形中, 于点

I)若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程;

II)过点作曲线的两条互相垂直的弦,四边形的面积为,探究是否为定值?若是,求出此定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,直线的极坐标方程为,且点在直线上.

(1)求的值及直线的直角坐标方程;

(2)圆的极坐标方程为,试判断直线与圆的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点, 轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)已知直线与曲线交于 两点,与轴交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点E到点A与点B的直线斜率之积为,点E的轨迹为曲线C

(1)求C的方程;

2)过点D作直线l与曲线C交于 两点,求的最大值

查看答案和解析>>

同步练习册答案