【题目】设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:
①若,,则
②若,,,则
③若,,则
④若,,则
其中正确命题的序号是( )
A.①和②B.②和③C.③和④D.①和④
【答案】A
【解析】
根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.
解:对于①,因为,所以经过作平面,使,可得,
又因为,,所以,结合得.由此可得①是真命题;
对于②,因为且,所以,结合,可得,故②是真命题;
对于③,设直线、是位于正方体上底面所在平面内的相交直线,
而平面是正方体下底面所在的平面,
则有且成立,但不能推出,故③不正确;
对于④,设平面、、是位于正方体经过同一个顶点的三个面,
则有且,但是,推不出,故④不正确.
综上所述,其中正确命题的序号是①和②
故选:
科目:高中数学 来源: 题型:
【题目】已知椭圆 的右焦点与短轴两个端点的连线互相垂直.
(1)求椭圆的标准方程;
(2)设点为椭圆的上一点,过原点且垂直于的直线与直线交于点,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列有关命题的说法错误的是( )
A. 若“”为假命题,则p,q均为假命题
B. “ ”是“”的充分不必要条件
C. “”的必要不充分条件是“”
D. 若命题p:,,则命题:,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A. 命题“”,则:“”
B. 命题“若,则”的否命题是真命题
C. 若为假命题,则为假命题
D. 若是的充分不必要条件,则是的必要不充分条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2018衡水金卷(二)】如图,矩形中, 且, 交于点.
(I)若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程;
(II)过点作曲线的两条互相垂直的弦,四边形的面积为,探究是否为定值?若是,求出此定值,若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知点的极坐标为,直线的极坐标方程为,且点在直线上.
(1)求的值及直线的直角坐标方程;
(2)圆的极坐标方程为,试判断直线与圆的位置关系.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点, 轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.
(Ⅰ)求曲线的普通方程与直线的直角坐标方程;
(Ⅱ)已知直线与曲线交于, 两点,与轴交于点,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com