精英家教网 > 高中数学 > 题目详情

【题目】从秦朝统一全国币制到清朝末年,圆形方孔铜钱(简称孔方兄是我国使用时间长达两千多年的货币.如图1,这是一枚清朝同治年间的铜钱,其边框是由大小不等的两同心圆围成的,内嵌正方形孔的中心与同心圆圆心重合,正方形外部,圆框内部刻有四个字同治重宝.某模具厂计划仿制这样的铜钱作为纪念品,其小圆内部图纸设计如图2所示,小圆直径1厘米,内嵌一个大正方形孔,四周是四个全等的小正方形(边长比孔的边长小),每个正方形有两个顶点在圆周上,另两个顶点在孔边上,四个小正方形内用于刻铜钱上的字.设,五个正方形的面积和为

1)求面积关于的函数表达式,并求的范围;

2)求面积最小值.

【答案】1的取值范围为2

【解析】

(1)由题意可知小正方形的边长为,大正方形的边长为,所以五个正方形的面积和为,又,所以,所以的取值范围为

(2)法一:其中,所以,此时,所以,则,因为,解得,即可求出面积最小值为;

法二:由(1)可知,令,则,设,利用导数得到当时,面积最小值为

解:(1)过点分别作小正方形边,大正方形边的垂线,垂足分别为

因为内嵌一个大正方形孔的中心与同心圆圆心重合,

所以点分别为小正方形和大正方形边的中点,

所以小正方形的边长为

大正方形的边长为

所以五个正方形的面积和为

因为小正方形边长小于内嵌一个大正方形的边长,

所以

所以的取值范围为

答:面积关于的函数表达式为

的取值范围为.

2)法一:

,其中

所以,此时

因为,所以

所以

所以

,化简得:

由此解得:

因为,所以

答:面积最小值为

法二:

,则,设

,得:

0

极小值

所以时,面积最小值为

答:面积最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了100名高中生,根据问卷调查,得到以下数据:

作文成绩优秀

作文成绩一般

总计

课外阅读量较大

35

20

55

课外阅读量一般

15

30

45

总计

50

50

100

1)根据列联表,能否有99.5%的把握认为课外阅读量的大小与作文成绩优秀有关;

2)若用分层抽样的方式从课外阅读量一般的高中生中选取了6名高中生,再从这6名高中生中随机选取2名进行面谈,求面谈的高中生中至少有1名作文成绩优秀的概率.

附:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜批发商经销某种新鲜蔬菜(以下简称蔬菜),购入价为200元/袋,并以300元/袋的价格售出,若前8小时内所购进的蔬菜没有售完,则批发商将没售完的蔬菜以150元/袋的价格低价处理完毕(根据经验,2小时内完全能够把蔬菜低价处理完,且当天不再购进).该蔬菜批发商根据往年的销量,统计了100蔬菜在每天的前8小时内的销售量,制成如下频数分布条形图.

1)若某天该蔬菜批发商共购入6蔬菜,有4蔬菜在前8小时内分别被4名顾客购买,剩下2袋在8小时后被另2名顾客购买.现从这6名顾客中随机选2人进行服务回访,则至少选中1人是以150元/袋的价格购买的概率是多少?

2)以上述样本数据作为决策的依据.

i)若今年蔬菜上市的100天内,该蔬菜批发商坚持每天购进6蔬菜,试估计该蔬菜批发商经销蔬菜的总盈利值;

ii)若明年该蔬菜批发商每天购进蔬菜的袋数相同,试帮其设计明年的蔬菜的进货方案,使其所获取的平均利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】石嘴山市第三中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:

1)根据茎叶图求甲乙两位同学成绩的中位数,并将同学乙的成绩的频率分布直方图填充完整;

(2)根据茎叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可);

(3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,记事件为“其中2个成绩分别属于不同的同学”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在等腰梯形中,,点的中点.将沿折起,使点到达的位置,得到如图所示的四棱锥,点为棱的中点.

(1)求证:平面

(2)若平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了121日至124日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据:

日期

121

122

123

124

温差

11

13

12

8

发芽数(颗)

26

32

26

17

根据表中121日至123日的数据,求得线性回归方程中的,则求得的_____;若用124日的数据进行检验,检验方法如下:先用求得的线性回归方程计算发芽数,再求与实际发芽数的差,若差值的绝对值不超过2颗,则认为得到的线性回归方程是可靠的,则求得的线性回归方程_____(填可靠不可靠).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为 (其中为参数,).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为截得的弦长为.

1)求实数的值;

2)设交于点,若点的坐标为,求的值.

查看答案和解析>>

同步练习册答案