精英家教网 > 高中数学 > 题目详情
17.已知椭圆C1:$\frac{{x}^{2}}{4}$+y2=1和圆C2:x2+y2=4,A,B,F分别为椭圆C1左顶点、右顶点和左焦点.
(1)点P是曲线C2上位于第一象限的一点,若△OPF的面积为$\frac{3}{2}$,求∠OPB;
(2)点M和N分别是椭圆C1和圆C2上位于x轴上方的动点,且直线AN的斜率是直线AM斜率的2倍,证明直线MN⊥x轴.

分析 (1)由已知椭圆方程求出F的坐标,设出P的坐标,再由三角形面积求出P的坐标,可得△BOP为等边三角形,则答案可求;
(2)设直线AM的斜率为k,则直线AN的斜率为2k,又两直线都过点A(-1,0),可得直线AM的方程为y=kx+k,直线AN的方程为y=2kx+2k,分别联立直线方程与椭圆、圆的方程,求出M、N的横坐标得答案.

解答 (1)解:由椭圆C1:$\frac{{x}^{2}}{4}$+y2=1,得F(-$\sqrt{3}$,0),
设P(xP,yP)(xP>0,yP>0),
∵${S}_{△OPF}=\frac{1}{2}×\sqrt{3}{y}_{P}=\frac{3}{2}$,∴${y}_{P}=\sqrt{3}$,
则${{x}_{P}}^{2}=4-({y}_{P})^{2}=4-3=1$,∴xP=1.
则∠BOP=60°,∴△BOP为等边三角形,则∠OPB=60°;
(2)证明:设直线AM的斜率为k,则直线AN的斜率为2k,又两直线都过点A(-1,0),
∴直线AM的方程为y=kx+k,直线AN的方程为y=2kx+2k,
将y=kx+k代入椭圆方程$\frac{{x}^{2}}{4}$+y2=1,消元可得(1+4k2)x2+8k2x+4k2-4=0,
由${x}_{M}-1=\frac{-8{k}^{2}}{1+4{k}^{2}}$,得${x}_{M}=\frac{1-4{k}^{2}}{1+4{k}^{2}}$;
将y=2kx+2k代入x2+y2=4,消元可得(1+4k2)x2+8k2x+4k2-4=0,
由${x}_{N}-1=\frac{-8{k}^{2}}{1+4{k}^{2}}$,得${x}_{N}=\frac{1-4{k}^{2}}{1+4{k}^{2}}$.
∵xM=xN,∴直线MN⊥x轴.

点评 本题考查椭圆与圆的标准方程,考查直线与椭圆的位置关系,确定两点的横坐标是关键,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知命题p:?c>0,y=(5-c)x在R上是增函数,命题q:?x∈R,x2+2x+c>0,若p∧q为假命题,p∨q为真命题,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,直三棱柱ABC-A1B1C1中,M,N分别为A1B,B1C1的中点
(Ⅰ)求证:MN∥平面A1ACC1
(Ⅱ)已知A1A=AB=2,BC=$\sqrt{5}$,∠CAB=90°,求三棱锥C1-ABA1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:?m∈[-1,1],不等式a2-5a+7≥m+2恒成立;命题q:x2+ax=2=0有两个不同的实数根,若p∨q为真,且p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.P为△ABC边BC上的点,满足3$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$,则$\frac{1}{m}$+$\frac{2}{n}$的最小值为(  )
A.$\frac{2\sqrt{2}}{3}$+1B.2$\sqrt{3}$C.2D.2$\sqrt{2}$+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,已知四棱锥S-ABCD的底面为矩形且SA⊥底面ABCD,若侧棱SC=5$\sqrt{2}$,则此四棱锥的外接球表面积为(  )
A.25πB.50πC.100πD.200π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知向量$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$是共面的三个向量,其中$\overrightarrow{a}$=($\sqrt{2}$,2),|$\overrightarrow{b}$|=2$\sqrt{3}$,|$\overrightarrow{c}$|=2$\sqrt{6}$,$\overrightarrow{a}$∥$\overrightarrow{c}$.
(Ⅰ)求|$\overrightarrow{c}$-$\overrightarrow{a}$|;
(Ⅱ)若$\overrightarrow{a}$-$\overrightarrow{b}$与3$\overrightarrow{a}$+2$\overrightarrow{b}$垂直,求$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合A={x|log${\;}_{\frac{1}{2}}$x>-1},B=|x|2x>$\sqrt{2}$|,则A∪B=(  )
A.($\frac{1}{2}$,2)B.($\frac{1}{2}$,+∞)C.(0,+∞)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.曲线y=2xtanx在点x=$\frac{π}{4}$处的切线方程是(2+π)x-y-$\frac{{π}^{2}}{4}$=0.

查看答案和解析>>

同步练习册答案