精英家教网 > 高中数学 > 题目详情

【题目】求函数f(x)=xlnx的定义域及单调区间.

【答案】解:f(x)的定义域是:(0,+∞),
f′(x)=lnx+x =1+lnx,
令f′(x)>0,解得:x>
令f′(x)<0,解得:0<x<
故函数f(x)在(0, )递减,在( ,+∞)
【解析】根据对数函数的性质求出f(x)的定义域即可;求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.
【考点精析】本题主要考查了函数的定义域及其求法和利用导数研究函数的单调性的相关知识点,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零;一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,地面上有一竖直放置的圆形标志物,圆心为C,与地面的接触点为G.与圆形标志物在同一平面内的地面上点P处有一个观测点,且PG=50m.在观测点正前方10m处(即PD=10m)有一个高为10m(即ED=10m)的广告牌遮住了视线,因此在观测点所能看到的圆形标志的最大部分即为图中从A到F的圆弧.

(1)若圆形标志物半径为25m,以PG所在直线为x轴,G为坐标原点,建立直角坐标系,求圆C和直线PF的方程;
(2)若在点P处观测该圆形标志的最大视角(即∠APF)的正切值为 ,求该圆形标志物的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知棱长都相等的正三棱锥内接于一个球,某学生画出四个过球心的平面截球与正三棱锥所得的图形,如图所示,则( )

A.以上四个图形都是正确的
B.只有(2)(4)是正确的
C.只有(4)是错误的
D.只有(1)(2)是正确的

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求与直线3x4y70垂直,且与原点的距离为6的直线方程;

(2)求经过直线l12x3y50l27x15y10的交点,且平行于直线x2y30的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形是正方形,是等边三角形,

(I)求证:

(II)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C对边分别为a,b,c,已知A=60°,a= ,sinB+sinC=6 sinBsinC,则△ABC的面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

1)写出曲线的参数方程和直线的普通方程;

2)已知点是曲线上一点,求点到直线的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是等差数列,是等比数列,且,则下列结论正确的是( )

A. B.

C. D. ,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an},{bn}满足a1=3,a2=6,{bn}是等差数列,且对任意正整数n,都有 成等比数列.
(1)求数列{bn}的通项公式;
(2)设 ,试比较2Sn 的大小.

查看答案和解析>>

同步练习册答案