分析 利用向量的运算法则:平行四边形法则得到A,O,D共线且O为三角形中线的三等分点,据三角形重心的性质判断出O为重心.
解答 证明:以$\overrightarrow{OB}$、$\overrightarrow{OC}$为邻边作平行四边形OBDC,
则$\overrightarrow{OD}$=$\overrightarrow{OB}$+$\overrightarrow{OC}$.
又$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,
∴$\overrightarrow{OB}$+$\overrightarrow{OC}$=-$\overrightarrow{OA}$.
∴-$\overrightarrow{OA}$=$\overrightarrow{OD}$.
∴O为AD的中点,且A、O、D共线.
又E为OD的中点,
∴O是中线AE的三等分点,且OA=$\frac{2}{3}$AE.
∴O是△ABC的重心.
点评 本题考查向量的运算法则:平行四边形法则、考查三角形的重心的性质:分三角形的中线为2:1的关系.
科目:高中数学 来源: 题型:选择题
A. | 能构成一个三角形,其面积大于△ABC面积的$\frac{1}{4}$ | |
B. | 能构成一个三角形,其面积等于△ABC面积的$\frac{1}{4}$ | |
C. | 能构成一个三角形,其面积小于△ABC面积的$\frac{1}{4}$ | |
D. | 不一定能构成三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 第一象限角 | B. | 第二象限角 | C. | 第三象限角 | D. | 第四象限角 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com