精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆,左顶点为,经过点,过点作斜率为的直线交椭圆于点,交轴于点.

1)求椭圆的方程;

2)已知的中点,,证明:对于任意的都有恒成立;

3)若过点作直线的平行线交椭圆于点,求的最小值.

【答案】1;(2)见解析;(3.

【解析】

1)根据待定系数法求得椭圆的方程;

2)利用点差法求出直线的斜率,再利用直线的斜率相乘为,证得两直线垂直;

3)将式子表示成关于的表达式,再利用基本不等式求得最小值.

1)由题意得:,所以椭圆

因为点在椭圆上,所以

所以椭圆的方程为.

2)设

所以

所以

因为直线的斜率为,所以

设直线的方程为

时,,故

所以,所以

所以对于任意的都有恒成立.

3)因为,所以设的方程为,代入得:

所以.

,得

所以弦长

所以

所以

等号成立当且仅当.

所以的最小值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.杨辉三角中,第行的所有数字之和为,若去除所有为1的项,依次构成数列,则此数列的前55项和为( )

A. 4072B. 2026C. 4096D. 2048

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求满足下列条件的椭圆的标准方程:

(1)焦点在y轴上,焦距是4,且经过点M(3,2);

(2)ca=5∶13,且椭圆上一点到两焦点的距离的和为26.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足是数列的前项的和.

(1)求数列的通项公式

(2)若成等差数列,18,成等比数列求正整数的值

(3)是否存在使得为数列中的项若存在求出所有满足条件的的值若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面命题正确的是(

A.”是“”的 充 分不 必 要条件

B.命题“若,则”的 否 定 是“ 存 在,则”.

C.,则“”是“”的必要而不充分条件

D.,则“”是“”的必要 不 充 分 条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,是给定的非零整数,

1)若,求

2)证明:从中一定可以选取无穷多项组成两个不同的常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A.命题“若,则”的逆否命题为:“若,则

B.”是“”的充分而不必要条件

C.为假命题,则均为假命题

D.命题“存在,使得”,则非“任意,均有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】世界卫生组织的最新研究报告显示,目前中国近视患者人数多达6亿,高中生和大学生的近视率均已超过七成,为了研究每周累计户外暴露时间(单位:小时)与近视发病率的关系,对某中学一年级200名学生进行不记名问卷调查,得到如下数据:

每周累积户外暴露时间(单位:小时)

不少于28小时

近视人数

21

39

37

2

1

不近视人数

3

37

52

5

3

(1)在每周累计户外暴露时间不少于28小时的4名学生中,随机抽取2名,求其中恰有一名学生不近视的概率;

(2)若每周累计户外暴露时间少于14个小时被认证为“不足够的户外暴露时间”,根据以上数据完成如下列联表,并根据(2)中的列联表判断能否在犯错误的概率不超过0.01的前提下认为不足够的户外暴露时间与近视有关系?

近视

不近视

足够的户外暴露时间

不足够的户外暴露时间

附:

P

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求上的最值;

(2)若,当有两个极值点时,总有,求此时实数的值.

查看答案和解析>>

同步练习册答案