精英家教网 > 高中数学 > 题目详情
某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有( )

A.22种
B.24种
C.25种
D.36种
【答案】分析:抛掷三次骰子后棋子恰好又回到点A处表示三次骰子的点数之和是12,列举出在点数中三个数字能够使得和为12的1,5,6;2,4,6;3,3,6;5,5,2;4,4,4,共有4种组合,前四种组合又可以排列出A33种结果,得到结果.
解答:解:由题意知正方形ABCD(边长为3个单位)的周长是12,
抛掷三次骰子后棋子恰好又回到点A处表示三次骰子的点数之和是12,
列举出在点数中三个数字能够使得和为12的有1,5,6;2,4,6;3,4,5;3,3,6;5,5,2;4,4,4;共有6种组合,
前三种组合1,5,6;2,4,6;3,4,5;又可以排列出A33=6种结果,
3,3,6;5,5,2;有6种结果,4,4,4;有1种结果.
根据分类计数原理知共有24+1=25种结果,
故选C.
点评:排列与组合问题要区分开,若题目要求元素的顺序则是排列问题,排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,3,4,5,6),则棋子就按逆时针方向行走i个单位,一直循环下去….则某人抛掷三次骰子后,棋子恰好又回到点A处的所有不同走法共有
25
25
种.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年黑龙江省等四校高三第一次模拟考试数学理卷 题型:选择题

某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形(边长为个单位)的顶点处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为),则棋子就按逆时针方向行走个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到

处的所有不同走法共有

A.种     B.种     C.种     D.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省杭州市长河高三市二测模考数学理卷 题型:选择题

某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形(边长为个单位)的顶点处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为),则棋子就按逆时针方向行走个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点处的所有不同走法共有

 

A.种     B.种     C.种     D.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江西省赣州市兴国县平川中学高三(上)第二次月考数学试卷(理科)(解析版) 题型:选择题

某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有( )

A.22种
B.24种
C.25种
D.36种

查看答案和解析>>

同步练习册答案