精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)=\frac{1}{x}-{log_2}\frac{2+x}{2-x}$.
(1)求f(x)的定义域;
(2)判断并证明f(x)的奇偶性.

分析 (1)根据函数成立的条件建立不等式关系即可求出函数的定义域.
(2)根据函数奇偶性的定义进行判断即可.

解答 解:(1)函数f(x)有意义,需$\left\{\begin{array}{l}x≠0\\ \frac{2+x}{2-x}>0\end{array}\right.$,得-2<x<2且x≠0,
∴函数定义域为{x|-2<x<0或0<x<2}.…(6分)
(2)函数f(x)为奇函数,
∵$f(x)=\frac{1}{x}-{log_2}\frac{2+x}{2-x}=-\frac{1}{x}+{log_2}\frac{2+x}{2-x}=-f(x)$,
又由(1)已知f(x)的定义域关于原点对称,
∴f(x)为奇函数.…(12分)

点评 本题主要考查函数定义域和函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.不等式$\frac{1}{x-1}$≥-1的解集为(  )
A.(-∞,0]∪(1,+∞)B.(-∞,0)∪[1,+∞)C.(0,1]D.[0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设命题p:?x>1,x2-x+1>0,则?p为(  )
A.?x≤1,x2-x+1≤0B.?x>1,x2-x+1≤0C.?x>1,x2-x+1≤0D.?x≤1,x2-x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=lg(-x2-2x+8)的单调递减区间是(  )
A.(-∞,-1)B.(-1,2)C.(-4,-1)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如果执行如图所示的程序,那么输出的值k=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.不等式组$\left\{\begin{array}{l}{x-y≥0}\\{x+y+2≥0}\\{2x-y-2≤0}\end{array}\right.$所确定的平面区域记为D,
(1)作出平面区域D.
(2)求(x-2)2+(y+3)2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知命题p:(x+1)(2-x)≥0,命题q:x2-2x-(a2-1)≤0(a>0),若¬p是¬q的必要不充分条件,则a的取值范围为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.过原点且平分直线x+y-2=0在坐标轴之间的线段,求这条直线的方程及它与已知直线的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式$\frac{3x-1}{2-x}$<0的解集是{x|x<$\frac{1}{3}$或x>2}.

查看答案和解析>>

同步练习册答案