【题目】选修4—4:坐标系与参数方程
已知直线l经过点,倾斜角,圆的极坐标方程为.
(Ⅰ)写出直线l的参数方程,并把圆的方程化为直角坐标方程;
(Ⅱ)设l与圆相交于两点,求点到两点的距离之积.
【答案】(1);(2).
【解析】试题分析:(1)由参数方程的概念可以写成l的参数方程为,化简为 (t为参数) ;在两边同时乘以,且ρ2=x2+y2,ρcosθ=x,ρsinθ=y,∴.(2)在l取一点,用参数形式表示,再代入,得到t2+t-=0,|PA|·|PB|=|t1t2|=.故点P到点A、B两点的距离之积为.
试题解析:(1)直线l的参数方程为,即 (t为参数)
由,得ρ=cosθ+sinθ,所以ρ2=ρcosθ+ρsinθ,
∵ρ2=x2+y2,ρcosθ=x,ρsinθ=y,∴.
(2)把代入.
得t2+t-=0,|PA|·|PB|=|t1t2|=.故点P到点A、B两点的距离之积为.
科目:高中数学 来源: 题型:
【题目】已知函数,其中.
(Ⅰ) 当a=-1时,求证: ;
(Ⅱ) 对任意,存在,使成立,求a的取值范围.
(其中e是自然对数的底数,e=2.71828…)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,过椭圆: 的左右焦点分别作直线, 交椭圆于与,且.
(1)求证:当直线的斜率与直线的斜率都存在时, 为定值;
(2)求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】五边形是由一个梯形与一个矩形组成的,如图甲所示,B为AC的中点, . 先沿着虚线将五边形折成直二面角,如图乙所示.
(Ⅰ)求证:平面平面;
(Ⅱ)求图乙中的多面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,且的图象与直线的两个相邻公共点之间的距离为.
(1)求函数的解析式,并求出的单调递增区间;
(2)将函数的图象上所有点向左平移个单位,得到函数的图象,设, , 为的三个内角,若,且向量, ,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正三角形ABC所在平面与梯形BCDE所在平面垂直,,=4 ,,F为棱AE的中点.
(1)求证:平面平面;
(2)若直线与平面所成角为,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有( )
A. 15种 B. 20种 C. 48种 D. 60种
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com