精英家教网 > 高中数学 > 题目详情

【题目】执行如图所示的程序框图,输出z的值是

【答案】21
【解析】解:模拟程序的运行,可得

x=0,y=1,z=2

满足条件z≤20,执行循环体,x=1,y=2,z=3

满足条件z≤20,执行循环体,x=2,y=3,z=5

满足条件z≤20,执行循环体,x=3,y=5,z=8

满足条件z≤20,执行循环体,x=5,y=8,z=13

满足条件z≤20,执行循环体,x=8,y=13,z=21

不满足条件z≤20,退出循环,输出z的值为21.

所以答案是:21.

【考点精析】利用程序框图对题目进行判断即可得到答案,需要熟知程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆 =1(a>b>0)所围成的平面图形绕y轴旋转一周后,得一橄榄状的几何体(如图)(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax﹣lnx(a∈R,a为常数)
(1)当a=﹣1时,若方程f(x)= 有实根,求b的最小值;
(2)设F(x)=f(x)ex , 若F(x)在区间(0,1]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 ,圆 的圆心在椭圆上,点到椭圆的右焦点的距离为.

(1)求椭圆的标准方程;

(2)过点作互相垂直的两条直线,且交椭圆两点,直线交圆 两点,且的中点,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c= ,△ABC的面积为 ,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中组织数学知识竞赛,采取答题闯关的形式,分两种题型,每种题型设两关.“数学文化”题答对一道得5分,“数学应用”题答对一道得10分,答对一道题即可进入下一关,否则终止比赛.有甲、乙、丙三人前来参赛,设三人答对每道题的概率分别是 ,三人答题互不影响.甲、乙选择“数学文化”题,丙选择“数学应用”题.
(Ⅰ)求乙、丙两人所得分数相等的概率;
(Ⅱ)设甲、丙两人所得分数之和为随机变量X,求X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为R,f(﹣2)=2021,对任意x∈(﹣∞,+∞),都有f'(x)<2x成立,则不等式f(x)>x2+2017的解集为(
A.(﹣2,+∞)
B.(﹣2,2)
C.(﹣∞,﹣2)
D.(﹣∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确命题的个数是 ①对于命题p:x∈R,使得x2+x+1<0,则p:x∈R,均有x2+x+1>0;
②命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
③设ξ~B(n,p),已知Eξ=3,Dξ= ,则n与p值分别为12,
④m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充要条件.(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线E的焦点为F,过点F的直线lE交于AC两点

(1)分别过AC两点作抛物线E的切线,求证:抛物线EAC两点处的切线互相垂直

(2)过点F作直线l的垂线与抛物线E交于BD两点,求四边形ABCD的面积的最小值.

查看答案和解析>>

同步练习册答案