精英家教网 > 高中数学 > 题目详情
如图,已知椭圆E:
x2
8
+
y2
4
=1
焦点为F1、F2,双曲线G:x2-y2=4,设P是双曲线G上异于顶点的任一点,直线PF1、PF2与椭圆的交点分别为A、B和C、D.
(1)设直线PF1、PF2的斜率分别为k1和k2,求k1•k2的值;
(2)是否存在常数λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,试求出λ的值;若不存在,请说明理由.
分析:(1)设出点P的坐标,表示出斜率,利用P是双曲线G上异于顶点的任一点,即可求得k1•k2的值;
(2)设出直线AB,CD的方程与椭圆方程联立,求得相应弦长,利用|AB|+|CD|=λ|AB|•|CD|,可得λ=
|AB|+|CD|
|AB|•|CD|
=
1
|AB|
+
1
|CD|
=
3
2
8
,从而问题得解.
解答:解:(1)设点P(x,y),x≠±2,那么k1=
y
x+2
k2=
y
x-2

k1k2=
y
x+2
×
y
x-2
=
y2
x2-4

∵P是双曲线G上异于顶点的任一点
∴x2-y2=4,
∴y2=x2-4,
∴k1k2=1
(2)设直线AB:y=k1(x+2),k1≠0
由方程组
y=k1(x+2)
x2
8
+
y2
4
=1
(2k12+1)x2+8k12x+8k12-8=0
设A(x1,y1),B(x2,y2
x1+x2=
-8k12
2k12+1
x1x2=
8k12-8
2k12+1

由弦长公式得|AB|=
1+k12
(x1+x2)2-4x1x2
=
4
2
(1+k12)
2k12+1

同理设C(x3,y3),D(x4,y4),|CD|=
1+k22
(x3+x4)2-4x3x4
=
4
2
(1+k22)
2k22+1

由(1)k1•k2=1得,k2=
1
k1
,代入得|CD|═
4
2
(1+k12)
k12+2

∵|AB|+|CD|=λ|AB|•|CD|,∴λ=
|AB|+|CD|
|AB|•|CD|
=
1
|AB|
+
1
|CD|
=
3
2
8

则存在λ=
3
2
8
,使得|AB|+|CD|=λ|AB|•|CD|恒成立.
点评:本题重点考查直线与圆锥曲线的综合,解题的关键是直线与椭圆方程联立,利用弦长公式,综合性强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,E的左顶点为A、上顶点为B,点P在椭圆上,且△PF1F2的周长为4+2
3

精英家教网
(I)求椭圆的方程;
(II)设C,D是椭圆E上两不同点,CD∥AB,直线CD与x轴、y轴分别交于M,N两点,且
MC
CN
MD
DN
,求λ+μ
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宁波二模)如图,已知椭圆E:
x2
a2
+
y2
b2
=1 (a>b>0)
的离心率是
2
2
,P1、P2是椭圆E的长轴的两个端点(P2位于P1右侧),点F是椭圆E的右焦点.点Q是x轴上位于P2右侧的一点,且满足
1
|P1Q|
+
1
|P2Q|
=
2
|FQ|
=2

(Ⅰ) 求椭圆E的方程以及点Q的坐标;
(Ⅱ) 过点Q的动直线l交椭圆E于A、B两点,连结AF并延长交椭圆于点C,连结BF并延长交椭圆于点D.
①求证:B、C关于x轴对称;
②当四边形ABCD的面积取得最大值时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年安徽省宿州市高三上学期期末考试理科数学试卷(解析版) 题型:解答题

如图,已知椭圆E的中心是原点O,其右焦点为F(20),过x轴上一点A(3,0)作直线与椭圆E相交于P,Q两点,的最大值为.

()求椭圆E的方程;

(),过点P且平行于y轴的直线与椭圆E相交于另一点M,试问M,F,Q是否共线,若共线请证明;反之说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2013届吉林省高二期中考试文科数学试卷(解析版) 题型:解答题

如图,已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点在x轴上,离心率

(1)求椭圆E的方程;

(2)求的角平分线所在直线的方程.

 

查看答案和解析>>

科目:高中数学 来源:2013年浙江省宁波市高考数学二模试卷(理科)(解析版) 题型:解答题

如图,已知椭圆E:的离心率是,P1、P2是椭圆E的长轴的两个端点(P2位于P1右侧),点F是椭圆E的右焦点.点Q是x轴上位于P2右侧的一点,且满足
(Ⅰ) 求椭圆E的方程以及点Q的坐标;
(Ⅱ) 过点Q的动直线l交椭圆E于A、B两点,连结AF并延长交椭圆于点C,连结BF并延长交椭圆于点D.
①求证:B、C关于x轴对称;
②当四边形ABCD的面积取得最大值时,求直线l的方程.

查看答案和解析>>

同步练习册答案