精英家教网 > 高中数学 > 题目详情

(12分)(2011•陕西)设椭圆C:过点(0,4),离心率为
(Ⅰ)求C的方程;
(Ⅱ)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.

(Ⅰ)(Ⅱ)

解析试题分析:(Ⅰ)根据题意,将(0,4)代入C的方程得b的值,进而由椭圆的离心率为,结合椭圆的性质,可得=;解可得a的值,将a、b的值代入方程,可得椭圆的方程.
(Ⅱ)根据题意,可得直线的方程,设直线与C的交点为A(x1,y1),B(x2,y2),联立直线与椭圆的方程,化简可得方程x2﹣3x﹣8=0,解可得x1与x2的值,由中点坐标公式可得中点的横坐标,将其代入直线方程,可得中点的纵坐标,即可得答案.
解:(Ⅰ)根据题意,椭圆过点(0,4),
将(0,4)代入C的方程得,即b=4
=
,∴a=5
∴C的方程为
(Ⅱ)过点(3,0)且斜率为的直线方程为
设直线与C的交点为A(x1,y1),B(x2,y2),
将直线方程代入C的方程,得
即x2﹣3x﹣8=0,解得
∴AB的中点坐标

即中点为
点评:本题考查椭圆的性质以及椭圆与直线相交的有关性质,涉及直线与椭圆问题,一般要联立两者的方程,转化为一元二次方程,由韦达定理分析解决.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

无论为任何实数,直线与双曲线恒有公共点.
(1)求双曲线的离心率的取值范围;
(2)若直线过双曲线的右焦点,与双曲线交于两点,并且满足,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知P是圆上任意一点,点N的坐标为(2,0),线段NP的垂直平分线交直线MP于点Q,当点P在圆M上运动时,点Q的轨迹为C.
(1)求出轨迹C的方程,并讨论曲线C的形状;
(2)当时,在x轴上是否存在一定点E,使得对曲线C的任意一条过E的弦AB,为定值?若存在,求出定点和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分,(1)小问4分,(2)小问8分)已知为椭圆上两动点,分别为其左右焦点,直线过点,且不垂直于轴,的周长为,且椭圆的短轴长为
(1)求椭圆的标准方程;
(2)已知点为椭圆的左端点,连接并延长交直线于点.求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点(都在轴上方) ,且
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

过抛物线C:上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限.
(1)求抛物线C的方程及点M的坐标;
(2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,如果点M在直线AB的上方,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆:的左顶点为,直线交椭圆两点(下),动点和定点都在椭圆上.
(1)求椭圆方程及四边形的面积.
(2)若四边形为梯形,求点的坐标.
(3)若为实数,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,椭圆的长轴长为,点为椭圆上的三个点,为椭圆的右端点,过中心,且

(1)求椭圆的标准方程;
(2)设是椭圆上位于直线同侧的两个动点(异于),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为.
(1)求抛物线C的方程;
(2)是否存在点M,使得直线MQ与抛物线C相切于点M?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案