精英家教网 > 高中数学 > 题目详情
观察下列等式:
2=1×2
2+4=2×3
2+4+6=3×4
2+4+6+8=4×5

照此规律,第n个等式可为
 
分析:根据等式的特点,利用归纳推理即可的得到结论.
解答:解:等式的左边分别为连续个正偶数的和,等式右边为对应式子的连续两个数相乘,
∴照此规律,第n个等式可为:2+4+…+2n=n(n+1).
故答案为:2+4+…+2n=n(n+1).
点评:本题主要考查归纳推理的应用,利用等式的特点,寻找等式的规律是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、观察下列等式:22=1+3,23=3+5,24=7+9,••,32=1+3+5,33=7+9+11,34=25+27+29,…,42=1+3+5+7,43=13+15=17+19,44=61+63+65+67,…按此规律,在pq(p、q都是不小于2的整数)写出的等式中,右边第一项是
pq-1-p+1

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列等式:
(1+x+x21=1+x+x2
(1+x+x22=1+2x+3x2+2x3+x4
(1+x+x23=1+3x+6x2+7x3+6x4+3x5+x6
(1+x+x24=1+4x+10x2+16x3+19x4+16x5+10x6+4x7+x8,…
由以上等式推测:对于n∈N*,若(1+x+x2n=a0+a1x+a2x2+…+a2nx2n则a2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•陕西)观察下列等式:
(1+1)=2×1
(2+1)(2+2)=22×1×3
(3+1)(3+2)(3+3)=23×1×3×5

照此规律,第n个等式可为
(n+1)(n+2)(n+3)…(n+n)=2n•1•3•5…•(2n-1)
(n+1)(n+2)(n+3)…(n+n)=2n•1•3•5…•(2n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

观察下列等式:
12=1,
12-22=-3,
12-22+32=6,
12-22+33-42=-10,

由以上等式推测到一个一般的结论:对于n∈N*
12-22+33-42+…+(-1))n+1n2=
(-1)n
n(n+1)
2
(-1)n
n(n+1)
2

查看答案和解析>>

同步练习册答案