精英家教网 > 高中数学 > 题目详情
16.tan($\frac{π}{6}$-2x)=1的解集是{x|x=$-\frac{π}{24}$+$\frac{1}{2}$kπ,k∈Z}.

分析 根据正切函数的图象和性质,可得tan($\frac{π}{6}$-2x)=1时,$\frac{π}{6}$-2x=$\frac{π}{4}$+kπ,k∈Z,进而可得三角方程的解集.

解答 解:若tan($\frac{π}{6}$-2x)=1,
则$\frac{π}{6}$-2x=$\frac{π}{4}$+kπ,k∈Z,
解得:x=$-\frac{π}{24}$+$\frac{1}{2}$kπ,k∈Z,
故tan($\frac{π}{6}$-2x)=1的解集是{x|x=$-\frac{π}{24}$+$\frac{1}{2}$kπ,k∈Z},
故答案为:{x|x=$-\frac{π}{24}$+$\frac{1}{2}$kπ,k∈Z}

点评 本题考查的知识点是正切函数的图象,熟练掌握正切函数的图象和性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)是定义R上的奇函数,在[0,+∞)上为增函数,若f(1-a)+f($\frac{1}{2}$-2a)<0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)为T=2的周期函数,在区间[-1,1]上,f(x)=$\left\{\begin{array}{l}{ax+1,x∈[-1,0]}\\{\frac{bx+2}{x+1},x∈[0,1]}\end{array}\right.$,其中a,b∈R,若f($\frac{1}{2}$)=f($\frac{3}{2}$),求a+3b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知在△ABC中,A=60°,$\frac{BC}{AB}$=$\frac{5}{2}$,则sinC=$\frac{\sqrt{3}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+2x.
(1)求f(2),f(a+1)(a∈R)的值;
(2)证明函数f(x)在[-1,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{{2}^{x+1}+a}{{2}^{x}+1}$(其中a为常数)是定义在R上的奇函数.
(1)求a的值;
(2)判断函数f(x)的单调性,并用定义证明;
(3)若(2t+1)f(t)+m•4t≥1对于任意实数t∈[1,2]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示的程序框图输出的所有点都在函数(  )
A.y=x+1的图象上B.y=2x的图象上C.y=2x的图象上D.y=2x-1的图象上

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.经过点A(0,2)与抛物线y2=4x只有一个交点的直线方程是(  )
A.x-2y+4=0B.x-2y+4=0或y=2
C.x-2y+4=0或x=0D.x-2y+4=0或y=2或x=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若f′(x0)=2,则$\lim_{k→0}$$\frac{f({x}_{0}-k)-f({x}_{0})}{2k}$=-1.

查看答案和解析>>

同步练习册答案