精英家教网 > 高中数学 > 题目详情

命题“二次函数都有对称轴”的否定是:________

答案:略
解析:

二次函数不都有对称轴


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•眉山一模)设函数f(x)对其定义域内的任意实数x1x2都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,则称函数f(x)为上凸函数. 若函数f(x)为上凸函数,则对定义域内任意x1、x2、x3,…,xn都有f(
x1+x2+…+xn
n
)≥
f(x1)+f(x2)+…+f(xn)
n
(当x1=x2=x3=…=xn时等号成立),称此不等式为琴生不等式,现有下列命题:
①f(x)=lnx(x>0)是上凸函数;
②二次函数f(x)=ax2+bx+c(a≠0)是上凸函数的充要条件是a>0;
③f(x)是上凸函数,若A(x1,f(x1)),B(x2,f(x2))是f(x)图象上任意两点,点C在线段AB上,且
AC
CB
,则f(
x1x2
1+λ
)≥
f(x1)+λf(x2)
1+λ

④设A,B,C是一个三角形的三个内角,则sinA+sinB+sinC的最大值是
3
3
2

其中,正确命题的序号是
①③④
①③④
(写出所有你认为正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山一模)设函数f(x)对其定义域内的任意实数x1x2都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,则称函数f(x)为上凸函数.现有下列命题:
①f(x)=sinx,x∈[0,π]是上凸函数;
②f(x)=lnx(x>0)是上凸函数;
③二次函数f(x)=ax2+bx+c(a≠0)是上凸函数的充要条件是a>0;
④f(x)是上凸函数,若A(x1,f(x1)),B(x2,f(x2))是f(x)图象上任意两点,点C在线段AB上,且
AC
CB
,则f(
x1x2
1+λ
)≥
f(x1)+λf(x2)
1+λ

其中,正确命题的序号是
①②④
①②④
(写出所有你认为正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)对其定义域内的任意实数数学公式,则称函数f(x)为上凸函数. 若函数f(x)为上凸函数,则对定义域内任意x1、x2、x3,…,xn都有数学公式(当x1=x2=x3=…=xn时等号成立),称此不等式为琴生不等式,现有下列命题:
①f(x)=lnx(x>0)是上凸函数;
②二次函数f(x)=ax2+bx+c(a≠0)是上凸函数的充要条件是a>0;
③f(x)是上凸函数,若A(x1,f(x1)),B(x2,f(x2))是f(x)图象上任意两点,点C在线段AB上,且数学公式
④设A,B,C是一个三角形的三个内角,则sinA+sinB+sinC的最大值是数学公式
其中,正确命题的序号是________(写出所有你认为正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:2012年四川省眉山市高考数学一模试卷(理科)(解析版) 题型:解答题

设函数f(x)对其定义域内的任意实数,则称函数f(x)为上凸函数. 若函数f(x)为上凸函数,则对定义域内任意x1、x2、x3,…,xn都有(当x1=x2=x3=…=xn时等号成立),称此不等式为琴生不等式,现有下列命题:
①f(x)=lnx(x>0)是上凸函数;
②二次函数f(x)=ax2+bx+c(a≠0)是上凸函数的充要条件是a>0;
③f(x)是上凸函数,若A(x1,f(x1)),B(x2,f(x2))是f(x)图象上任意两点,点C在线段AB上,且
④设A,B,C是一个三角形的三个内角,则sinA+sinB+sinC的最大值是
其中,正确命题的序号是    (写出所有你认为正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:四川省模拟题 题型:填空题

设函数f(x)对其定义域内的任意实数x1与x2都有,则称函数f(x)为上凸函数. 若函数f(x)为上凸函数,则对定义域内任意x1、x2、x3,…,xn都有(当x1=x2=x3=…=xn时等号成立),称此不等式为琴生不等式,现有下列命题:
①f(x)=lnx(x>0)是上凸函数;
②二次函数f(x)=ax2+bx+c(a≠0)是上凸函数的充要条件是a>0;
③f(x)是上凸函数,若A(x1,f(x1)),B(x2,f(x2))是f(x)图象上任意两点,点C在线段AB上,且,则
④设A,B,C是一个三角形的三个内角,则sinA+sinB+sinC的最大值是
其中,正确命题的序号是(     )(写出所有你认为正确命题的序号).

查看答案和解析>>

同步练习册答案