精英家教网 > 高中数学 > 题目详情
17.在抛物线y2=4x上有三点A,B,C,△ABC的重心是抛物线的焦点F,则$|{\overrightarrow{FA}}|+|{\overrightarrow{FB}}|+|{\overrightarrow{FC}}|$=6.

分析 根据点F是△ABC重心,进而可求x1+x2+x3的值,再根据抛物线的定义,即可求得答案.

解答 解:抛物线焦点坐标F(1,0),准线方程:x=-1,
设A(x1,y1),B(x2,y2),C(x3,y3
∵点F是△ABC重心,
∴x1+x2+x3=3,
∵|FA|=x1-(-1)=x1+1,|FB|=x2-(-1)=x2+1,|FC|=x3-(-1)=x3+1,
∴|FA|+|FB|+|FC|=x1+1+x2+1+x3+1=(x1+x2+x3)+3=3+3=6.
故答案为:6.

点评 本题重点考查抛物线的定义、方程和简单性质,考查学生的计算能力,解题的关键是判断出x1+x2+x3=3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知p:-2≤x≤10,q:x2-2x+1-m2≤0(m>0).
(1)若p是q的充分条件,求实数m的取值范围;
(2)若p是q的必要而不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.图是偶函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<φ<π)的部分图象,△KML为等腰直角三角形,∠KML=90°,|KL|=1,则$f(\frac{1}{6})$=(  )
A.-$\frac{{\sqrt{3}}}{4}$B.-$\frac{1}{4}$C.-$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知tanα=4,tanβ=3,则tan(α+β)=-$\frac{7}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.定义两种运算:a⊕b=$\sqrt{{a^2}-{b^2}},a?b=\sqrt{{{({a-b})}^2}}$,则函数f(x)=$\frac{2⊕x}{{({x?2})-2}}$的奇偶性为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若关于x的指数函数方程4x-(a+3)•2x+1=0
(1)有实数解,求实数a的取值范围;
(2)在区间(-1,3]上有且只有一个实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(实验班做)
(1)已知sinα-sinβ=-$\frac{1}{3}$,cosα-csoβ=$\frac{1}{2}$,求cos(α-β)=$\frac{59}{72}$.(写出计算过程)
(2)在△ABC中,已知tanA,tanB是方程3x2-7x+2=0的两个实根,求tanC?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,已知AB和AC是圆的两条弦,过点B作圆的切线与AC的延长线相交于点D,过点C作BD的平行线与圆相交于点E,与AB相交于点F,AF=3,FB=1,EF=$\frac{3}{2}$,则线段CD的长为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在公差不为零的等差数列{an}中,2a3-a72+2a11=0,数列{bn}是等比数列,且b7=a7,则log2(b6b8)的值为(  )
A.2B.4C.8D.1

查看答案和解析>>

同步练习册答案