精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若,求函数的单调区间;

(2)若时,都有成立,求的取值范围.

【答案】(1) 上单调递减,在上单调递增;(2)

【解析】试题分析:(1)求出函数 的导数,解关于导函数的不等式,求出函数的单调区间即可;

(2)由(1).令,则可得当时, ,则上单调递增,而,即,故上单调递增, ,∴时成立;

又当时,可得上单调递减, 上单调递增,

∴存在一个,使得,即在上, 单调递减,

上单调递增,而,即在上, 恒大于0不成立

试题解析:(1)

时, 时, ;当时,

上单调递减,在上单调递增.

(2)令,则

,则

∴当时, ,则上单调递增,

,即

上单调递增,

时成立;

,易知 ,且

上单调递减, 上单调递增,

∴存在一个,使得,即在上, 单调递减,

上单调递增,而

∴在上, 恒大于0不成立

时不成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知:f(x)=lg(ax﹣bx)(a>1>b>0).
(1)求f(x)的定义域;
(2)判断f(x)在其定义域内的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,分别是的中点,平面平面是边长为2的正三角形,.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

设函数

(Ⅰ)若是函数的极值点,1和的两个不同零点,且

,求的值;

(Ⅱ)若对任意, 都存在 为自然对数的底数),使得

成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有xf'(x)+f(x)<0恒成立,则不等式xf(x)>0的解集是(
A.(﹣2,0)∪(2,+∞)
B.(﹣2,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解高三年级学生寒假期间的学习情况,某学校抽取了甲、乙两班作为对象,调查这两个班的学生在寒假期间平均每天学习的时间(单位:小时),统计结果绘成频率分布直方图(如图).已知甲、乙两班学生人数相同,甲班学生平均每天学习时间在区间的有8人.

(I)求直方图中的值及甲班学生平均每天学习时间在区间的人数;

(II)从甲、乙两个班平均每天学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为,A,B两点的极坐标分别为.

(1)求圆C的普通方程和直线的直角坐标方程;

(2)点P是圆C上任一点,求△PAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了了解全校学生的上网情况,在全校采取随机抽样的方法抽取了名学生(其中男女生人数恰好各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数分为组: ,得到如图所示的频率分布直方图:

1)写出的值;

2)求抽取的名学生中月上网次数不少于次的学生的人数;

3)在抽取的名学生中,从月上网次数少于次的学生中随机抽取人,求至少抽取到名男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知某几何体的三视图如下(单位:cm).
(1)画出这个几何体的直观图(不要求写画法);
(2)求这个几何体的表面积及体积.

查看答案和解析>>

同步练习册答案