精英家教网 > 高中数学 > 题目详情
17.已知点P(2,1)和直线l:3x-y-7=0.求:
(1)过点P与直线l平行的直线方程;
(2)过点P与直线l垂直的直线方程.

分析 (1)根据直线平行设出所求直线法方程,将P带入即可;(2)根据直线垂直求出所求直线的斜率,带入点斜式方程即可.

解答 解:(1)∵直线和3x-y-7=0平行,
故设直线的方程是:3x-y+c=0,
将P(2,1)带入直线的方程得:
6-1+c=0,解得:c=-5,
故所求直线的方程是:3x-y-5=0.
(2)直线l的斜率是3,
故所求直线的方程是-$\frac{1}{3}$,
故所求直线的方程是y-1=-$\frac{1}{3}$(x-2),
整理得:x-3y+1=0.

点评 本题考查了求直线方程问题,考查直线的位置关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.圆C1:(x-1)2+(y-3)2=9和C2:x2+(y-2)2=1,M,N分别是圆C1,C2上的点,P是直线y=-1上的点,则|PM|+|PN|的最小值是(  )
A.5$\sqrt{2}$-4B.$\sqrt{17}$-1C.6-2$\sqrt{2}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在正三角形△ABC内任取一点P,则点P到A,B,C的距离都大于该三角形边长一半的概率为(  )
A.1-$\frac{\sqrt{3}π}{6}$B.1-$\frac{\sqrt{3}π}{12}$C.1-$\frac{\sqrt{3}π}{9}$D.1-$\frac{\sqrt{3}π}{18}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=ax2-x-c,若不等式f(x)>0的解集为{x|-2<x<1},则函数y=f(-x)的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某休闲广场中央有一个半径为1(百米)的圆形花坛,现计划在该花坛内建造一条六边形观光步道,围出一个由两个全等的等腰梯形(梯形ABCF和梯形DEFC)构成的六边形ABCDEF区域,其中A、B、C、D、E、F都在圆周上,CF为圆的直径(如图).设∠AOF=θ,其中O为圆心.
(1)把六边形ABCDEF的面积表示成关于θ的函数f(θ);
(2)当θ为何值时,可使得六边形区域面积达到最大?并求最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列各式比较大小正确的是(  )
A.1.72.5>1.73B.0.6-1>0.62C.0.8-0.1>1.250.2D.1.70.3<0.93.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.直线3x-y+1=0在y轴上的截距是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=$\left\{\begin{array}{l}|{lo{g}_{5}(1-x)|,(x<1)}\\{-(x-2)^{2}+2,(x>1,x≠2)}\end{array}\right.$ 且对于方程f(x)2-af(x)+a2-3=0有7个实数根,则实数a的取值范围是$\sqrt{3}<a<2$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知空间向量$\overrightarrow a$=(0,1,1),$\overrightarrow b$=(-1,0,1),则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案