精英家教网 > 高中数学 > 题目详情

已知数列满足(t>0,n≥2),且,n≥2时,>0.其中是数列的前n项和.

   (1)求数列的通项公式;

   (2)若对于n≥2,n∈N *,不等式恒成立,求t 的取值范围.

解:(I)依题意,  , (1)-(2)得)(n≥3),由已知,故(n≥3),由  , ,得,即数列从第二项开始是首项为,公差为的等差数列.

    所以,又当时,,所以

   (II)设                要使,对于恒成立,只要成立, 所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an},{bn}与函数f(x),g(x),x∈R满足条件:an=bn,f(bn)=g(bn+1)(n∈N*).
(I)若f(x)≥tx+1,t≠0,t≠2,g(x)=2x,f(b)≠g(b),
limn→∞
an
存在,求x的取值范围;
(II)若函数y=f(x)为R上的增函数,g(x)=f-1(x),b=1,f(1)<1,证明对任意n∈N*,an+1<an(用t表示).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an},{bn}与函数f(x),g(x),x∈R满足条件:an=bn,f(bn)=g(bn+1)(n∈N*).
(I)若f(x)≥tx+1,t≠0,t≠2,g(x)=2x,f(b)≠g(b),数学公式存在,求x的取值范围;
(II)若函数y=f(x)为R上的增函数,g(x)=f-1(x),b=1,f(1)<1,证明对任意n∈N*,an+1<an(用t表示).

查看答案和解析>>

科目:高中数学 来源:辽宁省高考真题 题型:解答题

已知数列{an},{bn}与函数f(x),g(x),x∈R满足条件:an=bn,f(bn)=g(bn+1)(n∈N*)。
(1)若f(x)≥tx+1,t≠0,t≠2,g(x)=2x,f(b)≠g(b),存在,求的值;
(2)若函数y=f(x)为R上的增函数,g(x)=f-1(x),b=1,f(1)<1,证明对任意n∈N*,an+1<an(用t表示)。

查看答案和解析>>

科目:高中数学 来源:辽宁 题型:解答题

已知数列{an},{bn}与函数f(x),g(x),x∈R满足条件:an=bn,f(bn)=g(bn+1)(n∈N*).
(I)若f(x)≥tx+1,t≠0,t≠2,g(x)=2x,f(b)≠g(b),
lim
n→∞
an
存在,求x的取值范围;
(II)若函数y=f(x)为R上的增函数,g(x)=f-1(x),b=1,f(1)<1,证明对任意n∈N*,an+1<an(用t表示).

查看答案和解析>>

科目:高中数学 来源:2007年辽宁省高考数学试卷(理科)(解析版) 题型:解答题

已知数列{an},{bn}与函数f(x),g(x),x∈R满足条件:an=bn,f(bn)=g(bn+1)(n∈N*).
(I)若f(x)≥tx+1,t≠0,t≠2,g(x)=2x,f(b)≠g(b),存在,求x的取值范围;
(II)若函数y=f(x)为R上的增函数,g(x)=f-1(x),b=1,f(1)<1,证明对任意n∈N*,an+1<an(用t表示).

查看答案和解析>>

同步练习册答案