精英家教网 > 高中数学 > 题目详情
已知函数.
(1)求函数的极值;
(2)定义:若函数在区间上的取值范围为,则称区间为函数的“域同区间”.试问函数上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.
(1);(2)不存在,详见解析.

试题分析:(1)先求出函数的定义域与导数,求出极值点后,利用图表法确定函数的单调性,从而确定函数的极大值与极小值;(2)结合(1)中的结论可知,函数在区间上单调递增,根据定义得到,问题转化为求方程在区间上的实数根,若方程的根的个数小于,则不存在“域同区间”;若上述方程的根的个数不少于,则存在“域同区间”,并要求求出相应的根,从而确定相应的“域同区间”.
试题解析:(1),定义域为

,解得,列表如下:










 



极大值

极小值

故函数处取得极大值,即
函数处取得极小值,即
(2)由(1)知,函数在区间上单调递增,
假设函数在区间上存在“域同区间”,则有
则方程在区间上至少有两个不同的实数根,
构造新函数,定义域为
,令,解得
时,;当时,
故函数在区间上单调递减,在区间上单调递增,
因为,故函数在区间上存在唯一零点,
即方程在区间上只存在唯一实数根,
故函数在区间上不存在“域同区间”.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的最小值;
(2)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当a=2时,求函数y=f(x)的图象在x=0处的切线方程;
(2)判断函数f(x)的单调性;
(3)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极小值.
(1)若函数的极小值是,求
(2)若函数的极小值不小于,问:是否存在实数,使得函数上单调递减?若存在,求出的范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知ab∈R,函数f(x)=a+ln(x+1)的图象与g(x)=x3x2bx的图象在交点(0,0)处有公共切线.
(1)证明:不等式f(x)≤g(x)对一切x∈(-1,+∞)恒成立;
(2)设-1<x1x2,当x∈(x1x2)时,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知定义域为R的奇函数f(x)的导函数为f′(x),当x≠0时,f′(x)+>0,若afb=-2f(-2),c=ln f(ln 2),则下列关于abc的大小关系正确的是(  )
A.abcB.acb
C.cbaD.bac

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若存在过点(1,0)的直线与曲线y=x3和y=ax2+x-9都相切,则a等于(  )
A.-1或-B.-1或
C.-或-D.-或7

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数f(x)满足f(1)=1且对一切x∈R都有f′(x)<4,则不等式f(x)>4x-3的解集为(  )
A.(-∞,0)B.(0,+∞)C.(-∞,1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=cos2,则f=________.

查看答案和解析>>

同步练习册答案