精英家教网 > 高中数学 > 题目详情
对于函数f(x),若存在区间M=[a,b],(a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的一个“稳定区间”.下列所给出的函数中不存在“稳定区间”的是(  )
A、f(x)=ex
B、f(x)=x2
C、f(x)=cos
π
2
x
D、f(x)=x
考点:函数的值域
专题:新定义,函数的性质及应用
分析:根据函数“稳定区间”的定义,即存在区间M使函数的定义域与值域均为M.由此对4个函数逐一加以研究,
可得对于函数f(x)=x2存在M=[0,1]符合题意;
函数f(x)=cos
π
2
x存在M=[0,1]符合题意;
而函数f(x)=ex不存在“稳定区间”.
f(x)=x有很多稳定区间,
解答: 解:①对于A,因为f(x)=ex是R上的增函数,
且ex>x恒成立,故不存在区间M=[a,b]使得当x∈M时值域恰好是M
因此可得.f(x)=ex.不存在稳定区间.
②f(x)=x2,存在稳定区间[0,1],
③∵函数在(0,1)上是减函数,且f(0)=cos0=1,f(1)=cos
π
2
=0
∴当区间M=[0,1]时,可得函数的值域为=M,可得f(x)=cos
π
2
x存在稳定区间[0,1],
④f(x)=x有很多稳定区间,
故选:A
点评:本题给出函数“稳定区间”的概念,要我们在几个函数中找出存在“稳定区间”函数的个数.着重考查了基本初等函数的图象与性质、函数的定义域与值域等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>b>0,c>d>0,求证:
a
d
b
c

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,为测一建筑物的高度,在地面上选取A,B两点,从A,B两点分别测得建筑物顶端的仰角为30°,45°,且A,B两点间的距离为60m,则该建筑物的高度为(  )
A、(30+30
3
)m
B、(30+15
3
)m
C、(15+30
3
)m
D、(15+15
3
)m

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,∠B=
π
3
,cosA+cosC+
2
2
sin(A-C)=0,求角A、角C.

查看答案和解析>>

科目:高中数学 来源: 题型:

记bn=3n,前n项和为Tn,对于任意n属于N*,(Tn+
3
2
)k≥3n-6恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设0<x<y<1,0<a<1,则下列各式正确的是(  )
A、ax<ay
B、logax<logay
C、xa<ya
D、ax>1

查看答案和解析>>

科目:高中数学 来源: 题型:

为测量某塔AB的高度,在一幢与塔AB相距20m的楼顶处测得塔顶A的仰角为30°,测得塔基B的俯角为45°,那么塔AB的高度是(  )
A、20(1+
3
3
)m
B、20(1+
3
2
)m
C、20(1+
3
)m
D、20(1-
3
3
)m

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体AC1中,棱长为1,O为线段AB的中点,P为棱AA1的中点,M,N为线段CC1的两个三等分点,则VP-OMN=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的不等式(a2-1)x2-(a-1)x-1<0的解集是R,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案