精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,以O为原点,Ox轴为极轴,单位长度不变,建立极坐标系,直线l的极坐标方程为:ρsin(θ+ )= ,曲线C的参数方程为:
(1)写出直线l和曲线C的普通方程;
(2)若直线l和曲线C相交于A,B两点,定点P(﹣1,2),求线段|AB|和|PA||PB|的值.

【答案】
(1)解:直线l的极坐标方程为:ρsin(θ+ )=

展开可得: ρ(sinθ+cosθ)= ,可得直角坐标方程:x+y﹣1=0.

曲线C的参数方程为: ,x2=4(1+sin2t)=y,x∈


(2)解:直线l的参数方程为: ,代入曲线C的方程可得: t﹣2=0,

∴t1+t2=﹣ ,t1t2=﹣2.

∴|AB|=|t1﹣t2|= = =

|PA||PB|=|t1t2|=2


【解析】(1)直线l的极坐标方程为:ρsin(θ+ )= ,展开可得: ρ(sinθ+cosθ)= ,利用互化公式可得直角坐标方程.曲线C的参数方程为: ,可得x2=4(1+sin2t)=y,x∈ .(2)直线l的参数方程为: ,代入曲线C的方程可得: t﹣2=0,可得|AB|=|t1﹣t2|=
|PA||PB|=|t1t2|.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinωx+cosωx+c(ω>0,x∈R,c是常数)图象上的一个最高点为( ,1),与其相邻的最低点是( ,﹣3).
(1)求函数f(x)的解析式及其对称中心;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,且 =﹣ ac,试求函数f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为[﹣1,5],部分对应值如表,f(x)的导函数y=f′(x)的图象如图所示,下列关于函数f(x)的命题:

x

﹣1

0

4

5

f(x)

1

2

2

1

(1)函数y=f(x)是周期函数;
(2)函数f(x)在(0,2)上是减函数;
(3)如果当x∈[﹣1,t]时,f(x)的最大值是2,那么t的最大值为4;
(4)当1<a<2时,函数y=f(x)﹣a有4个零点.
其中真命题的个数有( )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元。

(1)设铁栅长为米,一堵砖墙长为米,求函数的解析式;

(2)为使仓库总面积达到最大,正面铁栅应设计为多长?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列{an}中,a1=2,且a2+1,a4+1,a8+1成等比数列.
(1)求数列{an}通项公式;
(2)设数列{bn}满足bn= ,求适合方程b1b2+b2b3+…+bnbn+1= 的正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={x|9x﹣43x+1+27=0},N={x|log2(x+1)+log2x=log26},则M、N的关系是(
A.MN
B.NM
C.M=N
D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 其中P,M是非空数集,且P∩M=,设f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.
(I)若P=(﹣∞,0),M=[0,4],求f(P)∪f(M);
(II)是否存在实数a>﹣3,使得P∪M=[﹣3,a],且f(P)∪f(M)=[﹣3,2a﹣3]?若存在,请求出满足条件的实数a;若不存在,请说明理由;
(III)若P∪M=R,且0∈M,I∈P,f(x)是单调递增函数,求集合P,M.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间如下:

组号

第一组

第二组

第三组

第四组

第五组

分组

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

(1)求图中a的值;

(2)根据频率分布直方图,估计这100名学生期中考试数学成绩的平均分;

(3)现用分层抽样的方法从第3、4、5组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2,求其中恰有1人的分数不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】曲线C1的参数方程为 (θ为参数),将曲线C1上所有点的横坐标伸长为原来的2倍,纵坐标伸长为原来的倍,得到曲线C2.以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(cosθ-2sinθ)=6.

(1)求曲线C2和直线l的普通方程.

(2)P为曲线C2上任意一点,求点P到直线l的距离的最值.

查看答案和解析>>

同步练习册答案