精英家教网 > 高中数学 > 题目详情

(本小题12分)

已知点P(2,0)及圆C:.

(1)若直线过点P且与圆心C的距离为1,求直线的方程.

(2)设直线与圆C交于A、B两点,是否存在实数,使得过点P(2,0)的直线垂直平

     分弦AB. 若存在,求出实数的值;若不存在,说明理由.

(本小题12分)

解:(1)由题意,圆方程为:

        ① 当l斜率不存在时,直线l的方程为:,而圆心为,满足题意 ……(2分)

        ② 当l斜率存在时,可令l的方程为:

           圆心C到直线l的距离

           于是l的方程为: …………………………………………(3分)

        综上,l的方程为: ……………………………………(1分)

   (2)由题意垂直平分弦AB,则:圆心在直线

        即过点,又过点P,的方程为: …………(2分)

        而直线AB垂直,则:

        则:AB的方程为: ………………………………………………(2分)

        又圆心到直线的距离:

        直线与圆相离,故:不合题意

        则:这样的实数不存在 …………………………………………………………(2分)

练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年福建师大附中高三上学期期中考试理科数学卷 题型:解答题

(本小题12分)已知函数为常数)是实数集上的奇函数,函数是区间[-1,1]上的减函数.

(I)求的值;

(II)若所在的取值范围上恒成立,求的取值范围;

(Ⅲ)讨论关于的方程的根的个数.

 

查看答案和解析>>

科目:高中数学 来源:2010年吉林省高一上学期期中考试数学试卷 题型:解答题

(本小题12分)已知二次函数满足

(1)求的解析式;

 (2) 当时,不等式:恒成立,求实数的范围.

(3)设,求的最大值;

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年福建省高二下学期期中考试理科数学 题型:解答题

(本小题12分)

已知双曲线的中心在原点,左右焦点分别为,离心率为,且过点

(1)求此双曲线的标准方程;

(2)若直线系(其中为参数)所过的定点恰在双曲线上,求证:

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年福建省四地六校高二下学期第一次月考数学文卷 题型:解答题

 

(本小题12分)

已知椭圆C的左右焦点坐标分别是(-1,0),(1, 0),离心率,直线与椭圆C交于不同的两点M,N,以线段MN为直径作圆P。

(1)求椭圆C的方程;

(2)若圆P恰过坐标原点,求圆P的方程;

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年河南省许昌市高二下学期联考数学理卷 题型:解答题

(本小题12分)

已知曲线直线,且直线与曲线相切于点,求直线的方程和切点的坐标。

 

查看答案和解析>>

同步练习册答案