精英家教网 > 高中数学 > 题目详情
20.三棱锥P-ABC中,平面PAC⊥平面ABC,PA=PB=PC=3.
(Ⅰ)求证:AB⊥BC;
(Ⅱ)设AB=BC=2$\sqrt{3}$,求直线AC与平面PBC所成角的大小.

分析 (Ⅰ)取AC中点O,连结PO、BO,由已知推导出PO⊥底面ABC,由此能证明AB⊥BC.
(Ⅱ)取BC的中点为M,连结OM,PM,由已知推导出平面POM⊥平面PBC,取PM的中点N,连结ON,NC,则∠ONC即为AC与平面PBC所成的角,由此能求出AC与平面PBC所成的角的大小.

解答 证明:(Ⅰ)取AC中点O,连结PO、BO,
∵PA=PC,∴PO⊥AC,
又∵平面PAC⊥平面ABC,∴PO⊥底面ABC,
又PA=PB=PC,∴AO=BO=CO,
∴△ABC为直角三角形,
∴AB⊥BC.
解:(Ⅱ)取BC的中点为M,连结OM,PM,
∴OM=$\frac{1}{2}$AB=$\sqrt{3}$,AO=$\frac{1}{2}\sqrt{(2\sqrt{3})^{2}+(2\sqrt{3})^{2}}$=$\sqrt{6}$,
∴PO=$\sqrt{P{A}^{2}-A{O}^{2}}$=$\sqrt{3}$,
由(Ⅰ)有PO⊥平面ABC,OM⊥BC,
由三垂线定理得PM⊥BC 
∴平面POM⊥平面PBC,
又∵PO=OM=$\sqrt{3}$,
∴△POM是等腰直角三角形,取PM的中点N,连结ON,NC,
则ON⊥PM,
又∵平面POM⊥平面PBC,且交线是PM,
∴ON⊥平面PBC,
∴∠ONC即为AC与平面PBC所成的角,
$ON=\frac{1}{2}PM=\frac{1}{2}\sqrt{3+3}$=$\frac{\sqrt{6}}{2}$,OC=$\sqrt{6}$,
∴sin$∠ONC=\frac{ON}{OC}=\frac{1}{2}$,
∴$∠ONC=\frac{π}{6}$.
故AC与平面PBC所成的角为$\frac{π}{6}$.

点评 本题考查两直线垂直的证明,考查线面角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.说明函数y=cos(2x-$\frac{π}{4}$)的图象,由y=sin2x的图象怎样变化而来.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.化简:$\frac{sin5°+cos15°sin10°}{cos5°-sin15°sin10°}$=2-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足:a1=$\frac{3}{2}$,且an=$\frac{{3n{a_{n-1}}}}{{2{a_{n-1}}+n-1}}$(n≥2,n∈N*).证明:{1-$\frac{n}{{a}_{n}}$}为一个等比数列,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图1所示:在边长为12的正方形AA′A${\;}_{1}^{′}$A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA${\;}_{1}^{′}$分别交BB1、CC1于P,Q两点,将正方形沿BB1、CC1折叠,使得A′A${\;}_{1}^{′}$与AA1重合,构成如图2所示的三棱柱ABC-A1B1C1
(Ⅰ)在底边AC上有一点M,且AM:MC=3:4,求证:BM∥平面APQ;
(Ⅱ)求直线BC与平面A1PQ所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数完全相同的是(  )
A.f(x)=x,g(x)=x2B.f(x)=x,g(x)=$\root{3}{x^3}$C.f(x)=x,g(x)=$\sqrt{x}$D.f(x)=$\sqrt{x^2}g(x)=\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,?ABCD中,∠DAB=60°,AB=2AD=2,M为CD的中点,沿BM将△CBM折起,使得平面AMC⊥平面BMC,O为线段BM的中点.
(1)求证:CO⊥平面ABMD;
(2)求点D到平面AMC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图在三棱锥A-BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=$\sqrt{3}$,BD=CD=1,另一个侧面是正三角形
(1)求证:AD⊥BC;
(2)求二面角B-AC-D的余弦值;
(3)点E在直线AC上,当直线ED与平面BCD成30°角若时,求点C到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a,b,l均为不同直线,α,β均为不同平面,给出下列3个命题:
①若α⊥β,a?β,则a⊥α;
②若α∥β,a?α,b?β,则a⊥b可能成立;
③若a⊥l,b⊥l,则a⊥b不可能成立.
其中,正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案