精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow{a}$=(2,1,4),$\overrightarrow{b}$=(1,0,2),且$\overrightarrow{a}$+$\overrightarrow{b}$与k$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,则k的值是(  )
A.1B.$\frac{1}{5}$C.$\frac{3}{5}$D.$\frac{15}{31}$

分析 利用向量垂直与数量积的关系即可得出.

解答 解:$\overrightarrow{a}$+$\overrightarrow{b}$=(3,1,6),k$\overrightarrow{a}$-$\overrightarrow{b}$=(2k-1,k,4k-2),
∵$\overrightarrow{a}$+$\overrightarrow{b}$与k$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,∴3(2k-1)+k+6(4k-2)=0,
解得k=$\frac{15}{31}$,
故选:D.

点评 本题考查了向量垂直与数量积的关系、向量坐标运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.复数z=(1-2i)(3+i),其中i为虚数单位,则|z|是5$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x,y满足不等式组$\left\{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}\right.$,则满足条件的P(x,y)表示的平面区域的面积等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列判断错误的是(  )
A.命题“?x>1,x2-1>0”的否定是“?x>1,x2-1≤0”
B.“x=2”是“x2-x-2=0”的充分不必要条件
C.若“p∧q”为假命题,则p,q均为假命题
D.命题“若a•b=0,则a=0或b=0”的否命题为“若a•b≠0,则a≠0且b≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕成本为50元,每个蛋糕的售价为100元,如果当天卖不完,剩余的蛋糕作垃圾处理.现搜集并整理了100天生日蛋糕的日需求量(单位:个),得到如图所示的柱状图.100天记录的各需求量的频率作为每天各需求量发生的概率.
(1)若该蛋糕店某一天制作生日蛋糕17个,设当天的需求量为n(n∈N),则当天的利润y(单位:元)是多少?
(2)若蛋糕店一天制作17个生日蛋糕.
①求当天的利润y(单位:元)关于当天需求量n的函数解析式;
②求当天的利润不低于600圆的概率.
(3)若蛋糕店计划一天制作16个或17个生日蛋糕,请你以蛋糕店一天利润的平均值作为决策依据,应该制作16个还是17个生日蛋糕?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在以A,B,C,D,E,F为顶点的五面体中,面ABEF为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E与二面角C-BE-F都是60°.
(1)证明平面ABEF⊥平面EFDC;
(2)证明:CD∥EF
(3)求二面角E-BC-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=1-2x的值域为(  )
A.[1,+∞)B.(1,+∞)C.(-∞,1]D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},则∁U(A∩B)=(  )
A.{1,4,5}B.{2,3}C.{4,5}D.{1,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=|x|(x-a)+1.当a=0时,函数f(x)的单调递增区间为(-∞,+∞);若函数g(x)=f(x)-a有3个不同的零点,则a的取值范围为(2$\sqrt{2}$-2,1) .

查看答案和解析>>

同步练习册答案