精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2+bx+c,(b,c∈R),集合A={x丨f(x)=0},B={x|f(f(x))=0},若存在x0∈B,x0A则实数b的取值范围是(
A.b≠0
B.b<0或b≥4
C.0≤b<4
D.b≤4或b≥4

【答案】B
【解析】解:由题意可得,A是函数f(x)的零点构成的集合. 由f(f(x))=0,可得 (x2+bx+c)2+b(x2+bx+c)+c=0,把x2+bx+c=0代入,解得c=0.
故函数f(x)=x2+bx,故由f(x)=0可得 x=0,或x=﹣b,故A={0,﹣b}.
方程f(f(x))=0,即 (x2+bx)2+b(x2+bx)=0,即 (x2+bx)(x2+bx+b)=0,
解得x=0,或x=﹣b,或 x=
由于存在x0∈B,x0A,故b2﹣4b≥0,解得b≤0,或b≥4.
由于当b=0时,不满足集合中元素的互异性,故舍去.
即实数b的取值范围为{b|b<0或b≥4 },
故选B.
【考点精析】根据题目的已知条件,利用元素与集合关系的判断和函数的零点的相关知识可以得到问题的答案,需要掌握对象与集合的关系是,或者,两者必居其一;函数的零点就是方程的实数根,亦即函数的图象与轴交点的横坐标.即:方程有实数根,函数的图象与坐标轴有交点,函数有零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)= ,若f(0)是f(x)的最小值,则a的取值范围为(
A.[﹣1,2]
B.[﹣1,0]
C.[1,2]
D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=﹣2x , g(x)=lg(ax2﹣2x+1),若对任意x1∈R,都存在x2∈R,使f(x1)=g(x2),则实数a的取值范围为(
A.(﹣1,0)
B.(0,1)
C.(﹣∞,1]
D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)设函数h(x)=g(x)﹣f(x),求函数h(x)在区间[2,4]上的值域;
(2)定义min(p,q)表示p,q中较小者,设函数H(x)=min{f(x),g(x)}(x>0), ①求函数H(x)的单调区间及最值;
②若关于x的方程H(x)=k有两个不同的实根,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足 ,( N*).

(Ⅰ)写出的值;

(Ⅱ)设,求的通项公式;

(Ⅲ)记数列的前项和为,求数列的前项和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点为,其左顶点在圆上.

Ⅰ)求椭圆的方程;

直线交椭圆两点,设点关于轴的对称点为(点与点不重合),且直线轴的交于点,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

a0时,求曲线fx)在x 1处的切线方程;

设函数,求函数hx)的极值;

[1e]e2718 28…)上存在一点x0,使得成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F.
(1)求证:PA∥平面BDE;
(2)求证:PB⊥平面DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的五面体中,面为直角梯形, ,平面 平面 是边长为2的正三角形.

(1)证明:

(2)证明: 平面

查看答案和解析>>

同步练习册答案