精英家教网 > 高中数学 > 题目详情
某电视台举办青年歌手大奖赛,有10名评委打分,已知甲、乙两名选手演唱后的打分情况如茎叶图所示:

 

6 4 3
9
1 5
8 7 7 5 4 2
8
0 1 3 6 6 8 8 9
9
7
 
(1)从统计的角度,你认为甲与乙比较,演唱水平怎样?
(2)现场有3名点评嘉宾A、B、C,每位选手可以从中选2位进行指导,若选手选每位点评嘉宾的可能性相等,求甲乙两选手选择的点评嘉宾恰重复一人的概率.
(1)甲演唱水平更高一点,但甲的方差较大,即评委对甲的水平认可存在较大的差异;(2)甲乙两选手选择的点评嘉宾恰重复一人的概率为

试题分析:第(1)问考查了对茎叶图的认识.利用公式求出甲乙两选手的平均数、方差,通过平均数来看水平,通过方差来看稳定性;第(2)问考查古典概型概率的计算.基本方法是,利用树图法列举出所有的基本事件,从中找出甲乙两选手选择的点评嘉宾恰重复一人包含基本事件的个数,最后利用古典概型的概率计算公式,即可求出甲乙两选手选择的点评嘉宾恰重复一人的概率.
试题解析:(1)由茎叶图可得:,所以甲演唱水平更高一点,但甲的方差较大,即评委对甲的水平认可存在较大的差异        5分
(2)依题意,共有 9 个基本事件:
 
甲的选择            乙的选择
其中,甲乙两选手选择的点评嘉宾恰重复一人包含6个基本事件.所以,所求概率为.                                    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知某中学高三文科班学生共有800人参加了数学与地理的水平测试,现学校决定利用随机数表法从中抽取100人进行成绩抽样调查,先将800人按001,002, ,800进行编号;
(1)如果从第8行第7列的数开始向右读,请你依次写出最先检查的3个人的编号;
(下面摘取了第7行到第9行)

(2)抽取的100的数学与地理的水平测试成绩如下表:
成绩分为优秀、良好、及格三个等级;横向,纵向分别表示地理成绩与数学成绩,例如:表中数学成绩为良好的共有20+18+4=42,若在该样本中,数学成绩优秀率是30%,求a,b的值:
人数
数学
优秀
良好
及格
地理
优秀
7
20
5
良好
9
18
6
及格
a
4
b
(3)在地理成绩及格的学生中,已知求数学成绩为优秀的人数比及格的人数少的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某中学举行了一次“环保知识竞赛”活动,为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计,按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据)
     
(1)求样本容量n和频率分布直方图中x,y的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在的学生个数,求的分布列及其数学期望 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在某次高三考试成绩中,随机抽取了9位同学的数学成绩进行统计。下表是9位同学的选择题和填空题的得分情况(选择题满分60分,填空题满分16分):
选择题
40
55
50
45
50
40
45
60
40
填空题
12
16

12
16
12
8
12
8
(Ⅰ)若这9位同学填空题得分的平均分为12分,试求表中的的值及他们填空题得分的标准差;
(Ⅱ)在(1)的条件下,记这9位同学的选择题得分组成的集合为A,填空题得分组成的集合为B。若同学甲的解答题的得分是46分,现分别从集合A、B中各任取一个值当作其选择题和填空题的得分,求甲的数学成绩高于100分的概率。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

为研究学生物理成绩与数学成绩是否相关,某中学老师将一次考试中五名学生的数学、物理成绩记录如下表所示:

根据上表提供的数据,经检验物理成绩与数学成绩呈线性相关,且得到y关于x的线性回归方程,那么表中t的值为       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某观赏鱼池塘中养殖大量的红鲫鱼与金鱼,为了估计池中两种鱼数量情况,养殖人员从池中捕出红鲫鱼和金鱼各1000条,并给每条鱼作上不影响其存活的记号,然后放回池内,经过一段时间后,再从池中随机捕出1000条鱼,分别记录下其中有记号的鱼数目,再放回池中,这样的记录作了10次,将记录数据制成如图所示的茎叶图.

(1)根据茎叶图分别计算有记号的两种鱼的平均数,并估计池塘中两种鱼的数量.
(2)随机从池塘中逐条有放回地捕出3条鱼,求恰好是1条金鱼2条红鲫鱼的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为缓解某路段交通压力,计划将该路段实施“交通限行”.在该路段随机抽查了50人,了解公众对“该路段限行”的态度,将调查情况进行整理,制成下表:
年龄
(岁)
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
频 数
5
10
15
10
5
5
赞成
人数
4
8
9
6
4
3
(1)作出被调查人员年龄的频率分布直方图.
(2)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行追踪调查,记选中的4人中不赞成“交通限行”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了解某市民众对政府出台楼市限购令的情况,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令赞成的人数如下表:
月收入
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
频数
5
10
15
10
5
5
赞成人数
4
8
12
5
2
1
将月收入不低于55的人群称为“高收入族”,月收入低于55的人群称为“非高收入族”.
(1)根据已知条件完成下面的2×2列联表,问能否在犯错误的概率不超过0.01的前提下认为非高收入族赞成楼市限购令?
 
非高收入族
高收入族
合计
赞成
 
 
 
不赞成
 
 
 
合计
 
 
 
(2)现从月收入在[15,25)的人群中随机抽取两人,求所抽取的两人都赞成楼市限购令的概率.
附:K2
P(K2k0)
0.05
0.025
0.010
0.005
k0
3.841
5.024
6.635
7.879

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一只田径队有男运动员48人,女运动员36人,用分层抽样的方法从该队的全体运动员中抽取一个容量为21人的样本,则抽取男运动员的人数为(    )
A.24B.8C.10D.12

查看答案和解析>>

同步练习册答案