精英家教网 > 高中数学 > 题目详情
3.命题p:“?x∈R,x2-x+1>0”,则?p为?x∈R,x2-x+1≤0.

分析 利用全称命题的否定是特称命题写出结果即可.

解答 解:因为全称命题的否定是特称命题,
所以命题p:“?x∈R,x2-x+1>0”,则?p为:?x∈R,x2-x+1≤0.
故答案为:?x∈R,x2-x+1≤0.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知矩形ABCD,PA⊥面ABCD,连接AC、BD、PB、PC、PD,则下列各组向量中数量积不为0的是(  )
A.$\overrightarrow{PC}$和$\overrightarrow{BD}$B.$\overrightarrow{DA}$和$\overrightarrow{PB}$C.$\overrightarrow{PD}$与$\overrightarrow{AB}$D.$\overrightarrow{PC}$与$\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设x∈R,则“x<1”是“x|x|<1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,已知sinA+cosA=$\frac{1}{5}$,则sinA-cosA=$\frac{7}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,用一根长为10m绳索围成了一个圆心角小于x且半径不超过3m的扇形场地,设扇形的半径为xm,面积为Scm2
(1)写出S关于x的函数表达式,并求出该函数的定义域;
(2)当半径x和圆心角α分别是多少时,所围扇形场地的面积S最大,并求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线y=-2x+b一定通过(  )
A.第一、三象限B.第二、四象限C.第一、二、四象限D.第二、三、四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l经过直线2x+y-5=0与x-2y=0的交点P,直线l1的方程为4x-y+1=0.
(Ⅰ)若直线l平行于直线l1,求l的方程;
(Ⅱ)若直线l垂直于直线l1,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.有一种走“方格迷宫”游戏,游戏规则是每次水平或竖直走动一个方格,走过的方格不能重复,只要有一个方格不同即为不同走法.现有如图的方格迷宫,图中的实线不能穿过,则从入口走到出口共有多少种不同走法?(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线与直线x=$\frac{{a}^{2}}{c}$交于点M,设其右焦点为F,且点F到渐近线的距离为d,则(  )
A.|MF|>dB.|MF|<dC.|MF|=dD.与a,b的值有关

查看答案和解析>>

同步练习册答案