精英家教网 > 高中数学 > 题目详情
已知直线l:y=kx-1与圆C:(x-1)2+y2=1相交于P、Q两点,点M(0,b)满足MP⊥MQ.
(Ⅰ)当b=0时,求实数k的值;
(Ⅱ)当b∈(-
12
,1)
时,求实数k的取值范围.
分析:(Ⅰ)当b=0时,M点即为原点,根据圆C的方程:(x-1)2+y2=1,原点(M点)落在圆上,若MP⊥MQ,则PQ为圆C:(x-1)2+y2=1直径,将圆心坐标代入直线方程,即可求出实数k的值;
(Ⅱ)根据P、Q两点在直线l:y=kx-1上,设出P,Q两点的坐标为(x1,kx1-1),(x2,kx2-1),联立方程后可以将方程看作是关于x的一元二次方程,根据韦达定理,可将MP⊥MQ转化为一个k与b的关系式,根据b∈(-
1
2
,1)时,即可得到实数k的取值范围.
解答:解:(Ⅰ)当b=0时,点M(0,0)在圆C:(x-1)2+y2=1上,
若足MP⊥MQ,则PQ为圆C:(x-1)2+y2=1直径,
即直线l:y=kx-1过圆心(1,0),
代入解得k=1.
(Ⅱ)设P,Q两点的坐标为(x1,kx1-1),(x2,kx2-1)
则由圆C:(x-1)2+y2=1及直线l:y=kx-1
得(k2+1)x2-2(k+1)x+1=0
则x1•x2=
1
k2+1
,x1+x2=
2(k+1)
k2+1

MP
=(x1,kx1-1-b),
MQ
=(x2,kx2-1-b)
由MP⊥MQ则
x1•x2+(kx1-1-b)•(kx2-1-b)=0
2k2+2k
k2+1
=(b+1)+
1
(b+1)

b∈(-
1
2
,1)

2k2+2k
k2+1
=(b+1)+
1
(b+1)
∈[2,
5
2

解得k≥1
故实数k的取值范围[1,+∞)
点评:本题考查的知识点是直线与圆相交的性质,直线与圆的综合应用,(Ⅱ)中应用的方法--“联立方程”+“设而不求”+“韦达定理”是解答直线与圆锥曲线(包括圆)的综合问题的常用方法,是解答高考压轴题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:y=kx+k+1,抛物线C:y2=4x,定点M(1,1).
(I)当直线l经过抛物线焦点F时,求点M关于直线l的对称点N的坐标,并判断点N是否在抛物线C上;
(II)当k(k≠0)变化且直线l与抛物线C有公共点时,设点P(a,1)关于直线l的对称点为Q(x0,y0),求x0关于k的函数关系式x0=f(k);若P与M重合时,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=kx+1与椭圆
x2
2
+y2=1交于M、N两点,且|MN|=
4
2
3
.求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知圆M:(x+1)2+y2=8及定点N(1,0),点P是圆M上一动点,点Q为PN的中点,PM上一点G满足
GQ
NP
=0

(1)求点G的轨迹C的方程;
(2)已知直线l:y=kx+m与曲线C交于A、B两点,E(0,1),是否存在直线l,使得点N恰为△ABE的垂心?若存在,求出直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=kx+b是椭圆C:
x24
+y2=1
的一条切线,F1,F2为左右焦点.
(1)过F1,F2作l的垂线,垂足分别为M,N,求|F1M|•|F2M|的值;
(2)若直线l与x轴、y轴分别交于A,B两点,求|AB|的最小值,并求此时直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=kx-1与双曲线C:x2-y2=4
(1)如果l与C只有一个公共点,求k的值;
(2)如果l与C的左右两支分别相交于A(x1,y1),B(x2,y2)两点,且|x1-x2|=2
5
,求k的值.

查看答案和解析>>

同步练习册答案