精英家教网 > 高中数学 > 题目详情
已知△ABC的三个顶点是A(-1,4),B(-2,-1),C(2,3).
(1)求BC边的高所在直线方程;
(2)求△ABC的面积S.
分析:(1)设BC边的高所在直线为l,由斜率公式求出KBC,根据垂直关系得到直线l的斜率 Kl,用点斜式求出直线l的方程,并化为一般式.
(2)由点到直线的距离公式求出点A(-1,4)到BC的距离d,由两点间的距离公式求出|BC|,代入△ABC的面积公式求出面积S的值.
解答:解:(1)设BC边的高所在直线为l,由题知 KBC=
3-(-1)
2-(-2)
=1,
则 直线l的斜率 Kl=-1,又点A(-1,4)在直线l上,
所以直线l的方程为 y-4=-1(x+1),即  x+y-3=0.
(2)BC所在直线方程为:y+1=1×(x+2)即  x-y+1=0,
点A(-1,4)到BC的距离d=
|-1-4+1|
2
=2
2
,又|BC|=
(-2-2)2+(-1-3)2
=4
2

则 S△ABC=
1
2
•BC•d
=
1
2
×4
2
×2
2
=8.
点评:本题考查斜率公式,直线方程的点斜式,两点间的距离公式,点到直线的距离公式的应用,求出点A(-1,4)到BC的距离d,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC的三个顶点是A(3,-4)、B(0,3)、C(-6,0),求它的三条边所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点是A(4,0),B(6,2),C(0,8)
(1)求BC边上的高所在直线的方程;
(2)求BC边上的中线所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个顶点是A(4,0),B(6,2),C(0,8)
(Ⅰ)求BC边所在直线的方程;
(Ⅱ)求BC边的高所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:2012年人教A版高中数学必修二3.3直线的交点坐标与距离公式练习卷(二) 题型:选择题

已知ABC的三个顶点是A(-a,0)、B(a,0)和C(a),则ABC的形状是(  )

A、等腰三角形     B、等边三角形

C、直角三角形     D、斜三角形

 

查看答案和解析>>

同步练习册答案