精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P﹣ABCD的底面ABCD为矩形,PA⊥平面ABCD,点E是棱PD的中点,点F是PC的中点F.

(1)证明:PB∥平面AEC;
(2)若ABCD为正方形,探究在什么条件下,二面角C﹣AF﹣D大小为60°?

【答案】
(1)证明:连接BD,设AC∩BD=O,连结OE,

∵四边形ABCD为矩形,

∴O是BD的中点,

∵点E是棱PD的中点,

∴PB∥EO,

又PB平面AEC,EO平面AEC,

∴PB∥平面AEC.


(2)解:由题意知AD,AB,AP两两垂直,建立如图所示空间直角坐标系A﹣xyz,

设AB=2a,AD=2b,AP=2c,

则A(0,0,0),B(2a,0,0),C(2a,2b,0),D(0,2b,0),P(0,0,2c).

设AC∩BD=O,连结OE,则O(a,b,0),E(0,b,c).

因为

所以 ,所以 ,a=b,A(0,0,0),B(2a,0,0),

C(2a,2a,0),D(0,2a,0),P(0,0,2c),E(0,a,c),F(a,a,c),

因为z轴平面CAF,所以设平面CAF的一个法向量为 =(x,1,0),

,所以 =2ax+2a=0,得x=﹣1,所以 =(﹣1,1,0).

因为y轴平面DAF,所以设平面DAF的一个法向量为 =(1,0,z),

,所以 =a+cz=0,得

所以 =(1,0,﹣ )∥ =(c,0,﹣a).

cos60°= = ,得a=c.

即当AP等于正方形ABCD的边长时,二面角C﹣AF﹣D的大小为60°.


【解析】(1)连接BD,设AC∩BD=O,连结OE,则PB∥EO,由此能证明PB∥平面AEC.(2)由题意知AD,AB,AP两两垂直,建立空间直角坐标系A﹣xyz,利用向量法能求出当AP等于正方形ABCD的边长时,二面角C﹣AF﹣D的大小为60°.
【考点精析】掌握直线与平面平行的判定是解答本题的根本,需要知道平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四面体ABCD中,过棱AB的上一点E作平行于AD,BC的平面分别交四面体的棱BD,DC,CA于点F,G,H

(1)求证:截面EFGH为平行四边形

(2)若P、Q在线段BD、AC上,,且P、F不重合,证明:PQ截面EFGH

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD的底面为菱形,∠BCD=120°,AB=PC=2,AP=BP=

(1)求证:AB⊥PC;
(2)求侧面BPC与侧面DPC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数如果满足:对任意存在常数都有成立则称上的有界函数其中称为函数的一个上界已知函数

(1)若函数为奇函数求实数的值;

(2)在(1)的条件下求函数在区间上的所有上界构成的集合;

(3)若函数上是以5为上界的有界函数求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,a.b.c分别为∠A.∠B.∠C的对边,如果a.b.c成等差数列,∠B=30°,△ABC的面积为 ,那么b等于(
A.
B.1+
C.
D.2+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直角坐标系xOy平面内,已知动点M到点D(﹣4,0)与E(﹣1,0)的距离之比为2.
(1)求动点M的轨迹C的方程;
(2)是否存在经过点(﹣1,1)的直线l,它与曲线C相交于A,B两个不同点,且满足 (O为坐标原点)关系的点M也在曲线C上,如果存在,求出直线l的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线方程,( ).

)若此方程表示圆,求的值及的范围

)在()的条件下,若,直线且与圆相交于 两点,且,求直

线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的一个上界.已知函数 .

(1)若函数为奇函数,求实数的值;

(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;

(3)若函数上是以3为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,离心率为.若是椭圆上的不同的两点, 的面积记为.

(I)求椭圆的方程;

(II)设直线的方程为, , ,求的值;

(III)设直线, 的斜率之积等于,试证明:无论如何移动,面积保持不变.

查看答案和解析>>

同步练习册答案