精英家教网 > 高中数学 > 题目详情
如图,已知平行六面体ABC-A1B1C1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?
解.(1)∵平行六面体底面为正方形,∴A1ACC1,∴A1C1AC,
又O1,O分别为上下底面中心,∴A1O1CO,A1O1=CO,
∴四边形A1O1CO为平行四边形,∴CO1A1O.
A1在底面ABCD射影为O,∴A1O⊥平面AC,所以CO1⊥平面AC,
又CO1?平面O1DC,∴平面O1DC⊥平面ABCD.
(2)过E作AC垂线,垂足为G,则EGA1O,∴EG⊥平面AC,
若要EF⊥AD,即EF⊥BC,则需GF⊥BC,
∵底面ABCD为正方形,∴FGAB,
由A1E=
1
2
AE,则OG=
1
2
AG,∴
GF
AB
=
CF
CB
=
CG
CA
=
4
6
=
2
3

∴F为BC的三等分点,靠近B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四面体ABCD中,O、E分别为BD、BC的中点,且CA=CB=CD=BD=2,AB=AD=
2

(1)求证:AO⊥平面BCD;
(2)求异面直线AB与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体AC′中,AB=AC=a,BB′=b(b>a),连接BC′,过点B′作B′E⊥BC′交CC′于E.
(1)求证:AC′⊥平面EB′D′;
(2)求三棱锥C′-B′D′E的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD是正方形,棱PD⊥底面ABCD,PD=DC,E是PC的中点.
(1)证明:PA平面BDE;
(2)证明:平面BDE⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,A-BCDE是一个四棱锥,AB⊥平面BCDE,且四边形BCDE为矩形,则图中互相垂直的平面共有(  )
A.4组B.5组C.6组D.7组

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PDMA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.
(Ⅰ)求证:平面EFG⊥平面PDC;
(Ⅱ)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图已知在三棱柱ABC-A1B1C1中,AA1⊥面ABC,AC=BC,M,N,P,Q分别是AA1,BB1,AB,B1C1的中点,
(1)求证:面PCC1⊥面MNQ;
(2)求证:PC1面MNQ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,△ABC为正三角形,EC⊥底面ABC,BDCE,且CE=CA=2BD,M是EA的中点,
求证:(1)DE=DA;
(2)面BDM⊥面ECA.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知正方体ABCD-A1B1C1D1棱长为2,E是线段B1C的中点,分别以AB、AD、AA1为x、y、z轴建立如图所示的空间直角坐标系A-xyz,点E的坐标是______.

查看答案和解析>>

同步练习册答案