精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以原点为极点,以轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线 的极坐标方程为:.

(I)若曲线,参数方程为:(为参数),求曲线的直角坐标方程和曲线的普通方程

(Ⅱ)若曲线,参数方程为 (为参数),,且曲线,与曲线交点分别为,求的取值范围,

【答案】(1)曲线的直角坐标方程为:

曲线的普通方程为:.

(2)

【解析】分析第一问首先应用极坐标与平面直角坐标的转换关系,求得曲线的直角坐标方程,

之后对曲线的参数方程进行消参,求得其普通方程;第二问将曲线的参数方程代入的方程,得到关于的关系式,利用韦达定理求得两个和与两根积的值,之后应用参数的几何意义以及题中所求得的范围,最后借助于对三角函数值域的求解求得结果.

详解:(1)

曲线的直角坐标方程为:

曲线的普通方程为:

(2)将的参数方程:代入的方程:得:

的几何意义可得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 如图是正方体的平面展开图在这个正方体中

①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.

以上四个命题中正确命题的序号是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱PA垂直于底面,EF分别是ABPC的中点,PAAD.

求证:(1)CD⊥PD(2)EF⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于相关系数的说法不正确的是( )

A. 相关系数越大两个变量间相关性越强;

B. 相关系数的取值范围为

C. 相关系数时两个变量正相关,时两个变量负相关;

D. 相关系数时,样本点在同一直线上。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两队学生参加“知识联想”抢答赛,比赛规则:①主持人依次给出两次提示,第一次提示后答对得2分,第二次提示后答对得1分,没抢到或答错者不得分;②主持人给出第一个提示后开始抢答,第一轮抢答出错失去第二轮答题资格;③每局比赛分两轮,若第一轮抢答者给出正确答案,则此局比赛结束,若第一轮答题者答错,主持人提示后另一队直接答题。如果甲、乙两队抢到答题权机会均等,并且势均力敌,第一个提示后答对概率均为;第二个提示后答对概率均为为甲队在一局比赛中的分.

(1)求甲在一局比赛中得分的分布列;

(2)若比赛共4局,求甲4局比赛中至少得6分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为的球的球面上有三个点,其中任意两点间的球面距离都等于,且经过这三个点的小圆周长为,则______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若时,讨论函数的单调性;

(2)若函数在区间上恰有2个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解人们对“2019年3月在北京召开的第十三届全国人民代表大会第二次会议和政协第十三届全国委员会第二次会议”的关注度,某部门从年龄在15岁到65岁的人群中随机调查了100人,并得到如图所示的年龄频率分布直方图,在这100人中关注度非常髙的人数与年龄的统计结果如右表所示:

年龄

关注度非常高的人数

15

5

15

23

17

(Ⅰ)由频率分布直方图,估计这100人年龄的中位数和平均数;

(Ⅱ)根据以上统计数据填写下面的列联表,据此表,能否在犯错误的概率不超过的前提下,认为以45岁为分界点的不同人群对“两会”的关注度存在差异?

(Ⅲ)按照分层抽样的方法从年龄在35岁以下的人中任选六人,再从六人中随机选两人,求两人中恰有一人年龄在25岁以下的概率是多少.

45岁以下

45岁以上

总计

非常髙

一般

总计

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为(为参数),圆的方程为.以原点为极点,轴正半轴为极轴建立极坐标系.

(Ⅰ)求直线及圆的极坐标方程;

(Ⅱ)若直线与圆交于两点,求的值.

查看答案和解析>>

同步练习册答案