已知函数f(x)是定义在R上的奇函数,并且当x∈(0,+∞)时,f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.
(1)-3. (2) f(x)=.
【解析】
试题分析:(1)因为f(x)为奇函数,且当x∈(0,+∞)时,f(x)=2x,
所以f(log2)=f(-log23)=-f(log23)=-2log23=-3. (6分)
(2)设任意的x∈(-∞,0),则-x∈(0,+∞),
因为当x∈(0,+∞)时,f(x)=2x,所以f(-x)=2-x,
又因为f(x)是定义在R上的奇函数,则f(-x)=-f(x),
所以f(x)=-f(-x)=-2-x,即当x∈(-∞,0)时,f(x)=-2-x; (8分)
又因为f(0)=-f(0),所以f(0)=0, (10分)
综上可知,f(x)=. (12分)
考点:本题主要考查分段函数的概念,函数的奇偶性,指数函数、对数函数的性质。
点评:典型题,奇函数在x=0处有意义,则有f(0)=0.
科目:高中数学 来源: 题型:
1 |
3 |
a-3 |
2 |
x | 2 1 |
x | 2 2 |
x | 3 1 |
x | 3 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
x |
1+x |
1 |
10 |
1 |
9 |
1 |
2 |
19 |
2 |
19 |
2 |
1 |
2 |
1 |
9 |
1 |
10 |
1 |
x |
| ||
1+
|
x |
1+x |
1 |
1+x |
x |
1+x |
1+x |
1+x |
1 | ||
2x+
|
查看答案和解析>>
科目:高中数学 来源: 题型:
x+1-a |
a-x |
1 |
2 |
1 |
2 |
3 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
1-x |
1 |
2 |
OP |
OM |
ON |
1 |
n |
2 |
n |
n-1 |
n |
|
3 |
1 |
a-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| ||
1-x |
1 |
n |
2 |
n |
n-1 |
n |
1 |
a1 |
1 |
a2 |
1 |
an |
sinα | ||
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com