精英家教网 > 高中数学 > 题目详情
1.一个三棱锥的底面是等边三角形,各侧棱长均为$\sqrt{3}$,那么该三棱锥的体积最大时,它的高为(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\frac{{\sqrt{10}}}{2}$

分析 三棱锥P-ABC中,设底面边长为a,求出高,可得体积,换元,利用导数确定函数的单调性,即可得出结论.

解答 解:如图,三棱锥P-ABC中,设底面边长为a,
则高$h=\sqrt{{{(\sqrt{3})}^2}-{{(\frac{2}{3}•\frac{{\sqrt{3}}}{2}a)}^2}}=\sqrt{3-\frac{1}{3}{a^2}}$.
所以它的体积$V=\frac{1}{3}{S_{△ABC}}•h=\frac{1}{3}×\frac{{\sqrt{3}}}{4}{a^2}•\sqrt{3-\frac{1}{3}{a^2}}=\frac{1}{12}\sqrt{9{a^4}-{a^6}}$,
设y=-a6+9a4(a>0),
令t=a2(t>0)则y=-t3+9t2,y'=-3t2+18t=-3t(t-6),
所以函数y在(0,6)上单调递增,在(6,+∞)上单调递减,
所以当t=6时y最大,V也最大,此时$h=\sqrt{3-\frac{1}{3}×6}=1$,
故选C.

点评 本题考查三棱锥体积的计算,考查导数知识的运用,确定三棱锥体积的表达式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在ABCD中,角A,B,C所对的边分别为a,b,c,且$\overrightarrow{m}$=(sinA,sinB-sinC),$\overrightarrow{n}$=(a-$\sqrt{3}$b,b+c),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角C的值;
(2)若△ABC外接圆半径为2,面积为$\sqrt{3}$且a>b,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数$y={(\frac{1}{3})^{\sqrt{2x-{x^2}}}}$的单调递增区间为(  )
A.(1,+∞)B.(-∞,1)C.[1,2]D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x+$\frac{a}{x}+b(a>0)$是奇函数.
(1)若点Q(1,3)在函数f(x)的图象上,求函数f(x)的解析式;
(2)写出函数f(x)的单调区间(不要解答过程,只写结果);
(3)设点A(t,0),B(t+1,0)(t∈R),点P在f(x)的图象上,且△ABP的面积为2,若这样的点P恰好有4个,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知点P(-2,-2),Q(0,-1),取一点R(2,m),使得PR+PQ最小,那么实数m的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82  81  79  78  95  88  93  84    乙:92  95  80  75  83  80  90  85
(1)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;
(2)从甲已抽取的8次预赛中随机抽取两次成绩,求这两次成绩中至少有一次高于90的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=mx-$\frac{m-1+2e}{x}$-lnx,m∈R函数g(x)=$\frac{1}{xcosθ}$+lnx在[1,+∞)上为增函数,且θ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(Ⅰ)求θ的值;
(Ⅱ)当m=0时,求函数f(x)的单调区间和极值;
(Ⅲ)若在[1,e]上至少存在一个x0,使得f(x0)>g(x0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\sqrt{2}$sin$\frac{x}{2}$cos$\frac{x}{2}$-$\sqrt{2}$sin2$\frac{x}{2}$
(Ⅰ) 求f(x)的最小正周期;
(Ⅱ).在锐角△ABC中,角A,B,C的对边分别为a,b,c.若f(2A)=0,且a=1求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.计算${(\frac{8}{27})^{-\;\frac{2}{3}}}+lg25+lg4+{3^{{{log}_3}2}}$=$\frac{25}{4}$.

查看答案和解析>>

同步练习册答案