试题分析:(Ⅰ)先求导,代入0可求得a的值。再将
代入原函数求
,既得切点坐标,再将
代入导函数求
,根据导数的几何意义可知
即为切线在点
处切线的斜率,根据直线方程的点斜式即可求得切线方程。(Ⅱ)先求导数,及其零点,判断导数符号变化,即可得原函数增减变化,可得其极值。再求其端点处的函数值。比较极值和端点处函数值最小的一个即为最小值。此题注意分类讨论。
试题解析:解:(Ⅰ)已知函数
,
所以
,
,
又
,所以
.
又
,
所以曲线
在点
处的切线方程为
. 5分
(Ⅱ)
,
令
,则
.
(1)当
时,
在
上恒成立,所以函数
在区间
上单调递增,所以
;
(2)当
时,在区间
上,
,在区间
上,
,所以函数
在区间
上单调递减,在区间
上单调递增,且
是
上唯一极值点,所以
;
(3)当
时,在区间
上,
(仅有当
时
),所以
在区间
上单调递减
所以函数
.
综上所述,当
时,函数
的最小值为
,
时,函数
的最小值为
13分