精英家教网 > 高中数学 > 题目详情

【题目】对于函数f(x),若存在x0∈R,使得f(x0)=x0成立,则称x0为f(x)的天宫一号点.已知函数f(x)=ax2+(b-7)x+18的两个天宫一号点分别是-3和2.

(1)求a,b的值及f(x)的表达式;

(2)当函数f(x)的定义域是[t,t+1]时,求函数f(x)的最大值g(t).

【答案】(1)f(x)=-3x2-2x+18;(2).

【解析】试题分析:(1)依题意得f(-3)=-3,f(2)=2,带入解方程即可;

(2)比较函数对称轴和定义域[t,t+1]的位置关系,依次得最大值.

试题解析:

(1)依题意得f(-3)=-3,f(2)=2,即解得

∴f(x)=-3x2-2x+18.

(2)①当区间[t,t+1]在对称轴左侧时,即,也即时,

f(x)的最大值为f(t+1)=-3t2-8t+13;

②当对称轴在[t,t+1]内时,即,也即时,

f(x)的最大值为

③当[t,t+1]在右侧时,即时,

f(x)的最大值为f(t)=-3t2-2t+18,

所以g(t)=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设p:实数x满足,其中,命题实数满足

|x-3|≤1 .

(1)若为真,求实数的取值范围;

(2)若的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①分类变量的随机变量越大,说明“有关系”的可信度越大.

②以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是和0.3.

③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为中,

.正确的个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数对一切实数都有,且当时,,又.

(1)判断该函数的奇偶性并说明理由;、

(2)试判断该函数在上的单调性;

(3)求在区间的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长均相等的正三棱柱ABCA1B1C1中,D为BB1的中点,F在AC1上,且DF⊥AC1,则下述结论:

①AC1⊥BC;

②AF=FC1

③平面DAC1⊥平面ACC1A1,其中正确的个数为( )

A.0 B.1

C.2 D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形是边长为4的正方形,点边上任意一点(与点不重合),连接,过点于点,且,过点,交于点,连接,设.

(1)求点的坐标(用含的代数式表示)

(2)试判断线段的长度是否随点的位置的变化而改变?并说明理由.

(3)当为何值时,四边形的面积最小.

(4)在轴正半轴上存在点,使得是等腰三角形,请直接写出不少于4个符合条件的点的坐标(用含的式子表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.

(1)当a=3时,求A∩B;

(2)若a>0,且A∩B=,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区预计从2015年初开始的第月,商品的价格 ,价格单位:元),且第月该商品的销售量(单位:万件).

(1)商品在2015年的最低价格是多少?

(2)2015年的哪一个月的销售收入最少,最少是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三年级3名男生和1名女生为了报某所大学,事先进行了多方详细咨询,并根据自己的高考成绩情况,最终估计3名男生报此所大学的概率都是,这1名女生报此所大学的概率是且这4人报此所大学互不影响。

(Ⅰ)求上述4名学生中报这所大学的人数中男生和女生人数相等的概率;

(Ⅱ)在报考某所大学的上述4名学生中,记为报这所大学的男生和女生人数的和,试求的分布列和数学期望.

查看答案和解析>>

同步练习册答案