精英家教网 > 高中数学 > 题目详情
15.在△ABC中,角A,B,C成等差数列,且最大边和最小边是方程2x2-6x+3=0的两根,则△ABC的外接圆半径等于$\frac{{\sqrt{6}}}{2}$.

分析 利用一元二次方程的根与系数的关系,得出最大边与最小边之间的等量关系,再利用余弦定理可求b,进而利用正弦定理即可得解.

解答 解:∵角A,B,C成等差数列,
∴$\left\{\begin{array}{l}{2B=A+C}\\{A+B+C=π}\end{array}\right.$,解得:B=$\frac{π}{3}$,
∴b既不是最大边,也不是最小边,不妨假设c为最大边,a为最小边,
则$\left\{\begin{array}{l}{a+c=3}\\{ac=\frac{3}{2}}\end{array}\right.$,
∴b2=c2+a2-2accos60°=(a+c)2-3ac=$\frac{9}{2}$,
∴b=$\frac{3\sqrt{2}}{2}$(a=-$\frac{3\sqrt{2}}{2}$舍去)
∴R=$\frac{b}{2sinB}$=$\frac{\frac{3\sqrt{2}}{2}}{2×\frac{\sqrt{3}}{2}}$=$\frac{{\sqrt{6}}}{2}$.
故答案为:$\frac{{\sqrt{6}}}{2}$.

点评 此题主要考查了一元二次方程根与系数的关系和三角形三边关系,正弦定理,余弦定理以及二次根式的计算,题目综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知点P(3m,-2m)(m<0)在角α的终边上,求sinα,cosα,tanα.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.由动点P引圆x2+y2=1两条切线PA、PB,切点分别为A,B,∠APB=90°,则动点P的轨迹方程为x2+y2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.计算机执行如图的程序,输出的结果是(  ) 
A.1,3B.4,9C.4,8D.4,12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.

(1)求直方图中x的值.
(2)求月平均用电量不大于220度的居民有多少户.
(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知定义在N*上的单调增函数y=f(x),对于任意的n∈N*,都有f(n)∈N*且f(f(n))=3n恒成立,则f(2017)-f(1999)=18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sin2x-2cos2x+1.
(1)求函数f(x)在区间[-$\frac{π}{12}$,$\frac{π}{2}$)上的值域;
(2)设$α,β∈({0,\frac{π}{2}}),f({\frac{1}{2}α+\frac{π}{12}})=\frac{10}{13},f({\frac{1}{2}β+\frac{π}{3}})=\frac{6}{5}$,求sin(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}是等差数列,前n项和Sn,若S20>0,S21<0,那么Sn取得最大值时n=(  )
A.20B.21C.11D.10

查看答案和解析>>

同步练习册答案