精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆),过原点的两条直线分别与交于点,得到平行四边形.

1)当为正方形时,求该正方形的面积.

2)若直线关于轴对称,上任意一点的距离分别为,当为定值时,求此时直线的斜率及该定值.

3)当为菱形,且圆内切于菱形时,求满足的关系式.

【答案】1;(2;(3.

【解析】

(1)直线的方程为利用,可得,根据对称性,可得正方形的面积;

(2) 利用距离公式,结合为定值,即可证明结论;(3)设出切线的方程与椭圆方程联立,分类讨论,即可求满足的关系式.

1)因为为正方形,所以直线的方程为.

的坐标为方程组的实数解,

代入椭圆方程,解得.

根据对称性,可得正方形的面积.

2)由题设,不妨设直线的方程为),于是直线的方程为.

,于是有,又

,将代入上式,

对于任意,上式为定值,必有,即

因此,直线的斜率分别为

此时.

3)设与圆相切的切点坐标为,于是切线的方程为.

的坐标为方程组的实数解.

时,均为正方形,椭圆均过点,于是有.

时,将代入

整理得

于是

同理可得.

因为为菱形,所以

,即

于是

整理得,由

,即.

综上,满足的关系式为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

1)当时,求函数在点处的切线方程;

2是函数的极值点,求函数的单调区间;

3)在(2)的条件下,,若,使不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln (x+1)-xa∈R.

(1)当a>0时,求函数f(x)的单调区间;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,记

1)证明:有且仅有一个零点;

2)记的零点为,若内有两个不等实根,判断的大小,并给出对应的证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂生产一批零件,为了解这批零件的质量状况,检验员从这批产品中随机抽取了100件作为样本进行检测,将它们的重量(单位:g)作为质量指标值.由检测结果得到如下频率分布直方图.

分组

频数

频率

8

16

0.16

4

0.04

合计

100

1

1)求图中的值;

2)根据质量标准规定:零件重量小于47或大于53为不合格品,重量在区间内为合格品,重量在区间内为优质品.已知每件产品的检测费用为5元,每件不合格品的回收处理费用为20元.以抽检样本重量的频率分布作为该零件重量的概率分布.若这批零件共,现有两种销售方案:方案一:不再检测其他零件,整批零件除对已检测到的不合格品进行回收处理,其余零件均按150/件售出;方案二:继续对剩余零件的重量进行逐一检测,回收处理所有不合格品,合格品按150/件售出,优质品按200/件售出.仅从获得利润大的角度考虑,该生产商应选择哪种方案?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)若曲线在点处的切线与直线垂直,求实数的值;

(Ⅱ)求函数的单调区间;

(Ⅲ)用表示中的较大者,记函数.若函数内恰有2个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面分别是的中点.

(1)求三棱锥的体积;

(2)若异面直线所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.

购买金额(元)

人数

10

15

20

15

20

10

1)求购买金额不少于45元的频率;

2)根据以上数据完成列联表,并判断是否有的把握认为购买金额是否少于60元与性别有关.

不少于60元

少于60元

合计

40

18

合计

附:参考公式和数据:.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面平面,四边形是边长为的菱形,.

1)证明:平面

2)求三棱锥的体积.

查看答案和解析>>

同步练习册答案