精英家教网 > 高中数学 > 题目详情

如图,斜三棱柱的底面是直角三角形,,点在底面内的射影恰好是的中点,且

(1)求证:平面平面;
(2)若,求点到平面的距离.

(1)证明见解析;(2)

解析试题分析:
解题思路:(1)作出辅助线,利用线面垂直的判定定理证明即可;(2)合理转化三棱锥的顶点和底面,利用体积法求所求的点到平面的距离.
规律总结:对于空间几何体中的垂直、平行关系的判定,要牢牢记住并灵活进行转化,线线关系是关键;涉及点到平面的距离问题,往往转化三棱锥的顶点,利用体积法求距离.
试题解析:(1)取中点,连接,则





(2)设点到平面的距离
,

考点:1.空间中垂直的判定;2.点到平面的距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

ab为两个不重合的平面,lmn为两两不重合的直线,给出下列四个命题:
①若ablÌa,则lb
②若mÌanÌambnb,则ab; 
③若lalb,则ab
④若mn是异面直线,mana,且lmln,则la.
其中真命题的序号是____★____

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知两条相交直线∥平面,则的位置关系是        

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知三角形△ABC与△BCD所在平面相互垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,点P,Q分别在线段BD,CD上,沿直线PQ将△PQD向上翻折,使D与A重合.

(Ⅰ)求证:AB⊥CQ;
(Ⅱ)求BP的长;
(Ⅲ)求直线AP与平面BCD所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面且边长为的菱形,侧面 是等边三角形,且平面⊥底面

(1)若的中点,求证:平面
(2)求证:
(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面为直角梯形,且,侧面底面. 若.
(1)求证:平面
(2)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知的直径AB=3,点C为上异于A,B的一点,平面ABC,且VC=2,点M为线段VB的中点.
(1)求证:平面VAC;
(2)若AC=1,求二面角M-VA-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,AB是底面半径为1的圆柱的一条母线,O为下底面中心,BC是下底面的一条切线。

(1)求证:OB⊥AC;
(2)若AC与圆柱下底面所成的角为30°,OA=2。求三棱锥A-BOC的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,侧棱垂直于底面,分别为的中点.
(1)求证:平面平面
(2)求证:平面
(3)求三棱锥的体积.

查看答案和解析>>

同步练习册答案