精英家教网 > 高中数学 > 题目详情

设椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,PC上的点,PF2F1F2,PF1F2=30°,C的离心率为(  )

(A) (B) (C) (D)

 

【答案】

D

【解析】RtPF1F2,|F1F2|=2c(c为半焦距),

因为∠PF1F2=30°,

所以|PF2|=,|PF1|=,

由椭圆的定义知2a=|PF1|+|PF2|=,

所以e==.

故选D.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练22练习卷(解析版) 题型:解答题

设椭圆C:+=1(a>b>0)过点(0,4),离心率为.

(1)C的方程;

(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.

 

查看答案和解析>>

科目:高中数学 来源:2014届辽宁省丹东市高二下学期期初摸底文科数学卷(解析版) 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设直线l与椭圆C交于AB两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:=1(a>b>0)过点(1,),F1、F2分别为椭圆C的左、右两个焦点,且离心率e=.

(1)求椭圆C的方程;

(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M、N两点,若AM、AN的斜率k1,k2满足k1+k2=,求直线l的方程;

(3)已知P是椭圆C上位于第一象限内的点,△PF1F2的重心为G,内心为I,求证:IG∥F1F2.

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆C:=1(a>b>0)过点(1,),F1、F2分别为椭圆C的左、右两个焦点,且离心率e=.

(1)求椭圆C的方程;

(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M、N两点.若AM,AN的斜率k1,k2满足k1+k2=,求直线l的方程;

(3)已知P是椭圆C上位于第一象限内的点,△PF1F2的重心为G,内心为I,求证:GI∥F1F2.

查看答案和解析>>

同步练习册答案