精英家教网 > 高中数学 > 题目详情
设{an}是首项a1=1,公差d=3的等差数列,如果an=2008,则序号n等于(  )
分析:把已知数据代入等差数列的通项公式an=a1+(n-1)d可得关于n的方程,解之可得.
解答:解:由等差数列的通项公式可得an=a1+(n-1)d,
代入数据可得2008=1+3(n-1),
解之可得n=670
故选D
点评:本题考查等差数列的通项公式,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=
1
33
,公比q=
1
33
的等比数列,设bn+15log3an=t,常数t∈N*,数列{cn}满足cn=anbn
(1)求证:{bn}是等差数列;
(2)若{cn}是递减数列,求t的最小值;
(3)是否存在正整数k,使ck,ck+1,ck+2重新排列后成等比数列?若存在,求k,t的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=
1
4
的等比数列,其前n项和Sn中S3,S4,S2成等差数列,
(1)求数列{an}的通项公式;
(2)设bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求证:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列,
(1)求数列{an}的通项公式;
(2)若bn=log2|an|,设Tn为数列{
1bnbn+1
}
的前n项和,若Tn≤λbn+1对一切n∈N*恒成立,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是首项a1=1的等比数列,其公比q是方程2x2+3x+1=0的根.
(Ⅰ)求数列{an}的通项公式和前n项和Sn
(Ⅱ)当q≠-1时,设
1
bn
=log
1
2
|an+2|
,若b1b2+b2b3+…+bnbn+1≥λ对一切n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案