曲线都是以原点O为对称中心、坐标轴为对称轴、离心率相等的椭圆.点M的坐标是(0,1),线段MN是曲线的短轴,并且是曲线的长轴 . 直线与曲线交于A,D两点(A在D的左侧),与曲线交于B,C两点(B在C的左侧).
(1)当=,时,求椭圆的方程;
(2)若,求的值.
(1)C1 ,C2的方程分别为,;(2) .
【解析】
试题分析:(1)解:设曲线C1的方程为,C2的方程为()…2分
∵C1 ,C2的离心率相同,∴,∴, 3分
令代入曲线方程,则 .
当=时,A,C.……………5分
又∵,.由,且,解得 6分
∴C1 ,C2的方程分别为,. 7分
(2)令代入曲线方程,,得 ,得 9分
由于,所以(-,m),(,m) . 10分
由于是曲线的短轴,所以.
∵OC⊥AN,(). 11分
∵=(,m),=(,-1-m),
代入()并整理得2m2+m-1=0, 12分
∴或(舍负) ,∴ . 14分
考点:本题主要考查椭圆的标准方程,直线与椭圆的位置关系,平面向量的坐标运算。
点评:难题,求椭圆的标准方程,主要运用了椭圆的几何性质,注意明确焦点轴和a,b,c的关系。曲线关系问题,往往通过联立方程组,得到一元二次方程,运用韦达定理。本题(2)利用向量垂直,数量积为0,确定得到m的方程。
科目:高中数学 来源: 题型:
1 |
2 |
3 |
8 |
|
查看答案和解析>>
科目:高中数学 来源:广东省广州市2012届高三第一次模拟考试数学文科试题 题型:044
已知函数f(x)=-x3+ax2+b(a,b∈R).
(1)求函数f(x)的单调递增区间;
(2)若对任意a∈[3,4],函数f(x)在R上都有三个零点,求实数b的取值范围.
已知椭圆x2+=1的左、右两个顶点分别为A、B.曲线C是以A、B两点为顶点,离心率为的双曲线,设点P在第一象限且在曲线C上,直线AP与椭圆相交于另一点T.
(1)求曲线C的方程;
(2)设点P、T的横坐标分别为x1,x2,证明:x1·x2=1;
(3)设△TAB与△POB(其中O为坐标原点)的面积分别为S1与S2,且,求S-S的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年江苏省南通市如东县四校高三(上)12月联考数学试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2012-2013学年江苏省南通市如东县四校高三(上)12月联考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2012-2013学年江苏省扬州市江都市丁沟中学高三(上)自主学习诊断数学试卷(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com