精英家教网 > 高中数学 > 题目详情
8.如图,F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点,过F1的直线l与双曲线分别交于点A,B,且A(1,$\sqrt{3}$),若△ABF2为等边三角形,则△BF1F2的面积为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 根据双曲线的定义算出△AF1F2中,|AF1|=2a,|AF2|=4a,由△ABF2是等边三角形得∠F1AF2=120°,利用余弦定理算出c2=7a2,结合A(1,$\sqrt{3}$)在双曲线上,即可得出结论.

解答 解:根据双曲线的定义,可得|AF1|-|AF2|=2a,
∵△ABF2是等边三角形,即|AF2|=|AB|
∴|BF1|=2a
又∵|BF2|-|BF1|=2a,
∴|BF2|=|BF1|+2a=4a,
∵△BF1F2中,|BF1|=2a,|BF2|=4a,∠F1BF2=120°
∴|F1F2|2=|BF1|2+|BF2|2-2|BF1|•|BF2|cos120°
即4c2=4a2+16a2-2×2a×4a×(-$\frac{1}{2}$)=28a2
解得c2=7a2
∴b2=c2-a2=6a2,所以双曲线方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{6{a}^{2}}$=1,
又A(1,$\sqrt{3}$),在双曲线上,所以$\frac{1}{{a}^{2}}-\frac{3}{6{a}^{2}}$=1,解得a=$\frac{\sqrt{2}}{2}$.
所以△BF1F2的面积为$\frac{1}{2}×2a×4a×sin120°$=$2\sqrt{3}{a}^{2}$=$\sqrt{3}$,
故选C.

点评 本题主要考查双曲线的定义和简单几何性质等知识,根据条件求出a,b的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.函数f(x)=x2-5x+6,x∈[-5,5],在定义域内任取一点x0,使f(x0)≤0的概率是(  )
A.$\frac{1}{10}$B.$\frac{3}{5}$C.$\frac{3}{10}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.从抛物线y2=32x上各点向x轴作垂线,其垂线段中点的轨迹为E.
(Ⅰ)求轨迹E的方程;
(Ⅱ)已知直线l:y=k(x-2)(k>0)与轨迹E交于A,B两点,且点F(2,0),若|AF|=2|BF|,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(m,-1),$\overrightarrow{b}$=($\frac{1}{2},\frac{\sqrt{3}}{2}$)
(1)若m=-$\sqrt{3}$,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;
(2)设$\overrightarrow{a}⊥\overrightarrow{b}$.
①求实数m的值;
②若存在非零实数k,t,使得[$\overrightarrow{a}$+(t2-3)$\overrightarrow{b}$]⊥(-k$\overrightarrow{a}$+t$\overrightarrow{b}$),求$\frac{k+{t}^{2}}{t}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.将向量$\overrightarrow{a_1}=({{x_1},{y_1}}),\overrightarrow{a_2}=({{x_2},{y_2}}),…\overrightarrow{a_n}=({{x_n},{y_n}})$组成的系列称为向量列$\left\{{\overrightarrow{a_n}}\right\}$,并定义向量列$\left\{{\overrightarrow{a_n}}\right\}$的前n项和$\overrightarrow{S_n}=\overrightarrow{a_1}+\overrightarrow{a_2}+…+\overrightarrow{a_n}$.如果一个向量列从第二项起,每一项与前一项的差都是同一个向量,那么称这样的向量列为等差向量列,若向量列$\left\{{\overrightarrow{a_n}}\right\}$是等差向量列,那么下述向量中,与一定平行$\overrightarrow{{S}_{21}}$的向量是(  )
A.$\overrightarrow{{a_{10}}}$B.$\overrightarrow{{a_{11}}}$C.$\overrightarrow{{a_{20}}}$D.$\overrightarrow{{a_{21}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=x+cosx在[0,π]上的最小值为(  )
A.-2B.0C.-$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示的茎叶图记录了甲、乙两组各5名同学的投篮命中次数,乙组记录中有一个数据模糊,无法确认,在图中用x表示.
(1)若乙组同学投篮命中次数的平均数比甲组同学的平均数少1,求x及乙组同学投篮命中次数的方差;
(2)在(1)的条件下,分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名,求这两名同学的投篮命中次数之和为16的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在数列{an}中,a1=2,2an+1-2an=1,则S12=57.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知幂函数f(x)=xα(α为常数)的图象过点$P({2,\frac{1}{2}})$,则f(x)的单调递减区间是(  )
A.(-∞,0)B.(-∞,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,0)与(0,+∞)

查看答案和解析>>

同步练习册答案