精英家教网 > 高中数学 > 题目详情

【题目】若函数在点处的切线方程为

1)求函数的解析式.

2)若方程个不同的根,求实数的取值范围.

【答案】(1);(2).

【解析】

先对函数求导,得到

1)根据题意,得到,求解得出,即可得出结果;

2)先由导数的方法研究函数的单调性与极值,再将方程个不同的根,转化为直线与函数的图象有个交点,结合函数图像,即可求出结果.

因为,所以

1)因为函数在点处的切线方程为

所以有,解得

故所求函数的解析式为

2)由(1)可得

,得

变化时,的变化情况如下表:

x

(-,-2

2

(-22

2

2,+

0

0

因此,当x=-2时,有极大值

x2时,有极小值

所以函数的图象大致如图所示.

个不同的根,则直线与函数的图象有个交点,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某手机品牌公司的年固定成本为40万元,每生产1万部手机还需要另投入16万元,设该公句一年内生产x万部并全部销售完,每1万部手机的销售收入为万元,且

1)写出年利润(万元)关于年产量(万部)的函数解析式;

2)当年产量多少万部时,公司在该款手机生产获得最大利润,并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市政府招商引资,为吸引外商,决定第一个月产品免税,某外资厂该第一个月A型产品出厂价为每件10元,月销售量为6万件;第二个月,当地政府开始对该商品征收税率为 ,即销售1元要征收元)的税收,于是该产品的出厂价就上升到每件元,预计月销售量将减少p万件.

1)将第二个月政府对该商品征收的税收y(万元)表示成p的函数,并指出这个函数的定义域;

2)要使第二个月该厂的税收不少于1万元,则p的范围是多少?

3)在第(2)问的前提下,要让厂家本月获得最大销售金额,则p应为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用两种颜色去染正九边形的顶点每个顶点只染一种颜色证明在以这9点为顶点的所有三角形中,一定有两个顶点同色的全等三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥的底面是菱形.

1)若,求证:平面

2分别是上的点,若平面,求的值;

3)若,平面平面,判断是否为等腰三角形?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆O:与坐标轴分别交于A1,A2,B1,B2(如图).

(1)点Q是圆O上除A1,A2外的任意点(如图1),直线A1Q,A2Q与直线交于不同的两点M,N,求线段MN长的最小值;

(2)点P是圆O上除A1,A2,B1,B2外的任意点(如图2),直线B2Px轴于点F,直线A1B2A2P于点E.设A2P的斜率为k,EF的斜率为m,求证:2mk为定值.

(图1) (图2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列说法:①方程表示的图形是一个点;②命题,则为真命题;③已知双曲线的左右焦点分别为,过右焦点被双曲线截得的弦长为4的直线有3条;④已知椭圆上有两点,若点是椭圆上任意一点,且,直线的斜率分别为,则为定值;⑤已知命题满足是真命题,则实数.其中说法正确的序号是__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若直线与曲线相切于点,证明:

(Ⅱ)若不等式有且仅有两个整数解,求的取值范围.

查看答案和解析>>

同步练习册答案