精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)

(1)若椭圆的长轴长为4,离心率为
3
2
,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.
(1)由题意,2a=4,e=
c
a
=
3
2
,∴a=2,c=
3

∴b=
a2-c2
=1
∴椭圆C的标准方程为
x2
4
+y2=1

(2)显然直线x=0不满足条件,可设直线l:y=kx+2,A(x1,y1),B(x2,y2
直线代入椭圆方程,消去y可得(1+4k2)x2+16kx+12=0
∵△=(16k)2-4×12×(1+4k2)>0,∴k<-
3
2
或k>
3
2

x1+x2=-
16k
1+4k2
,x1x2=
12
1+4k2

∴y1y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4=
4-4k2
1+4k2

由于∠AOB为锐角,x1x2+y1y2>0,∴
12
1+4k2
+
4-4k2
1+4k2
>0

∴2<k<2
∴直线L的斜率的取值范围是(-2,-
3
2
)∪(
3
2
,2)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线的中心在原点O,其中一条准线方程为x=
3
2
,且与椭圆
x2
25
+
y2
13
=1
有共同的焦点.
(1)求此双曲线的标准方程;
(2)(普通中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,试问:是否存在实数k,使得以弦AB为直径的圆过点O?若存在,求出k的值,若不存在,请说明理由.
(重点中学学生做)设直线L:y=kx+3与双曲线交于A、B两点,C是直线L1:y=mx+6上任一点(A、B、C三点不共线)试问:是否存在实数k,使得△ABC是以AB为底边的等腰三角形?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

抛物线的顶点在原点,焦点在x轴的正半轴上,直线x+y-1=0与抛物线相交于A、B两点,且|AB|=
8
6
11

(1)求抛物线的方程;
(2)在x轴上是否存在一点C,使△ABC为正三角形?若存在,求出C点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的点P到左右两焦点F1,F2的距离之和为2
2
,离心率为
2
2

(Ⅰ)求椭圆的方程;
(Ⅱ)过右焦点F2的直线l交椭圆于A、B两点,若y轴上一点M(0,
3
7
)
满足|MA|=|MB|,求直线l的斜率k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
2
+y2=1
的左、右焦点分别为F1,F2,下顶点为A,点P是椭圆上任一点,⊙M是以PF2为直径的圆.
(Ⅰ)当⊙M的面积为
π
8
时,求PA所在直线的方程;
(Ⅱ)当⊙M与直线AF1相切时,求⊙M的方程;
(Ⅲ)求证:⊙M总与某个定圆相切.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知复数z满足|z-2|=1,复数z所对应的点的轨迹是C,若虚数满足u+
1
u
∈R
,求|u|的值,并判断虚数u所对应的点与C的位置关系.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C1x2+y2=
4
5
,直线l:y=x+m(m>0)与圆C1相切,且交椭圆C2
x2
a2
+
y2
b2
=1(a>b>0)
于A1,B1两点,c是椭圆C2的半焦距,c=
3
b

(1)求m的值;
(2)O为坐标原点,若
OA1
OB1
,求椭圆C2的方程;
(3)在(2)的条件下,设椭圆C2的左、右顶点分别为A,B,动点S(x1,y1)∈C2(y1>0)直线AS,BS与直线x=
34
15
分别交于M,N两点,求线段MN的长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线Σ1y=
1
4
x2
的焦点F在椭圆Σ2
x2
a2
+
y2
b2
=1
(a>b>0)上,直线l与抛物线Σ1相切于点P(2,1),并经过椭圆Σ2的焦点F2
(1)求椭圆Σ2的方程;
(2)设椭圆Σ2的另一个焦点为F1,试判断直线FF1与l的位置关系.若相交,求出交点坐标;若平行,求两直线之间的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

Rt△ABC中,∠C=90°,CD⊥AB于D,若BD∶AD=3∶2,则△ACD与△CBD的相似比为(  )
A.2∶3 B.3∶2C.9∶4D.∶3

查看答案和解析>>

同步练习册答案